Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > DNA nanoswitches rapidly detect Sars-Cov-2 and other emerging viruses: Programmable low-cost DNA-based platform for viral RNA detection

Abstract:
Programmable DNA nanoswitches that bind to viral RNA in human body fluids may provide an inexpensive platform to rapidly detect a wide variety of emerging viruses, including SARS-CoV-2, according to a new study. This approach may make testing more manageable in resource-limited areas, since it does not require enzymes or significant laboratory infrastructure, only costs about 1 penny per reaction, and can be performed within hours. RNA viruses are often the culprits behind widespread outbreaks, since their high mutation rates enable them to evolve quickly. Detecting these emergent RNA viruses remains challenging, especially in impoverished areas, since detection time windows can be as short as just a few days and laboratories may not be equipped to conduct immunoglobulin blood tests, which remain standard for clinical testing but sometimes lead to false positive results. To help overcome these challenges, Zhou et al. developed DNA nanoswitches that bind to both ends of target viral RNAs, forming loop-shaped compounds.

DNA nanoswitches rapidly detect Sars-Cov-2 and other emerging viruses: Programmable low-cost DNA-based platform for viral RNA detection

Washington, DC | Posted on August 21st, 2020

These negatively-charged, RNA-containing nanoswitch loops are then placed in a gel and stimulated with an electrical current, pulling them towards a positive electrode on the other end of the gel. Since the nanoswitches move more slowly when they are bound to viral RNA, this gel electrophoresis technique reveals the virus' presence. The researchers first tested this approach with DNA nanoswitches designed to target a sequence in the Zika virus genome and demonstrated its ability to detect clinically-relevant levels of Zika RNA in human urine. Zhou et al. next developed nanoswitches to target SARS-CoV-2 RNA in human saliva, finding that they could successfully detect the virus' presence within about 2 hours. The nanoswitches also successfully differentiated between Zika virus and Dengue virus, which occur in overlapping geographical regions and cause similar symptoms, demonstrating the nanoswitches' potential to avoid misdiagnoses.

####

For more information, please click here

Contacts:
Lifeng Zhou


@AAAS

Copyright © American Association for the Advancement of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Possible Futures

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Nanomedicine

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

From outside to inside: A rapid and precise total assessment method for cells: Researchers at Nara Institute of Science and Technology show that using four frequencies of applied voltage can improve the measurement of cell size and shape during impedance cytometry, enabling to en June 24th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Discoveries

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Announcements

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Nanobiotechnology

Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

From outside to inside: A rapid and precise total assessment method for cells: Researchers at Nara Institute of Science and Technology show that using four frequencies of applied voltage can improve the measurement of cell size and shape during impedance cytometry, enabling to en June 24th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Disinfectant mechanism of nano-sized electrostatic atomized water particles on SARS-CoV-2: Nano-sized electrostatic atomized water particles destroy SARS-CoV-2 envelope, protein, and RNA, thereby impairing the virus’s ability to bind to host cells June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project