Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications

The researchers have developed a wafer-scale prober that is being tested at the University of Southampton (left). The prober can autonomously and accurately perform optical and electrical device testing along with laser annealing at an average speed of less than 30 seconds per device. Images on the right show a closer look at the software driven positioning stage for autonomous measurements (top-right) and the input/output fibers positioned on top of the 8-inch wafer (bottom-right).

CREDIT
Xia Chen, University of Southampton
The researchers have developed a wafer-scale prober that is being tested at the University of Southampton (left). The prober can autonomously and accurately perform optical and electrical device testing along with laser annealing at an average speed of less than 30 seconds per device. Images on the right show a closer look at the software driven positioning stage for autonomous measurements (top-right) and the input/output fibers positioned on top of the 8-inch wafer (bottom-right). CREDIT Xia Chen, University of Southampton

Abstract:
Researchers have developed a new way to build power efficient and programmable integrated switching units on a silicon photonics chip. The new technology is poised to reduce production costs by allowing a generic optical circuit to be fabricated in bulk and then later programmed for specific applications such as communications systems, LIDAR circuits or computing applications.

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications

Washington, DC | Posted on May 29th, 2020

"Silicon photonics is capable of integrating optical devices and advanced microelectronic circuits all on a single chip," said research team member Xia Chen from the University of Southampton. "We expect configurable silicon photonics circuits to greatly expand the scope of applications for silicon photonics while also reducing costs, making this technology more useful for consumer applications."

In The Optical Society (OSA) journal Optics Express, researchers led by Graham Reed demonstrate the new approach in switching units that can be used as building blocks to create larger chip-based, programmable photonic circuits.

"The technology we developed will have a wide range of applications," said Chen. "For example, it could be used to make integrated sensing devices to detect biochemical and medical substances as well as optical transceivers for connections used in high-performance computing systems and data centers."

Erasable components

The new work builds on earlier research in which the investigators developed an erasable version of an optical component known as a grating coupler by implanting germanium ions into silicon. These ions induce damage that changes silicon's refractive index in that area. Heating the local area using a laser annealing process can then be used to reverse the refractive index and erase the grating coupler.

In the Optics Express paper, the researchers describe how they applied the same germanium ion implantation technique to create erasable waveguides and directional couplers, components that can be used to make reconfigurable circuits and switches. This represents the first time that sub-micron erasable waveguides have been created in silicon.

"We normally think about ion implantation as something that will induce large optical losses in a photonic integrated circuit," said Chen. "However, we found that a carefully designed structure and using the right ion implantation recipe can create a waveguide that carries optical signals with reasonable optical loss."

Building programmable circuits

They demonstrated the new approach by designing and fabricating waveguides, directional couplers and 1 X 4 and 2 X 2 switching circuits, using the University of Southampton's Cornerstone fabrication foundry. Photonic devices from different chips tested both before and after programming with laser annealing showed consistent performance.

Because the technique involves physically changing the routing of the photonic waveguide via a one-time operation, no additional power is needed to retain the configuration when programmed. The researchers have also discovered that electrical annealing, using a local integrated heater, as well as laser annealing can be used to program the circuits.

The researchers are working with a company called ficonTEC to make this technology practical outside the laboratory by developing a way to apply the laser and/or electrical annealing process at wafer scale, using a conventional wafer prober (wafer testing machine), so that hundreds or thousands of chips could be programmed automatically. They are currently working on integrating the laser and electrical annealing processes into such a wafer-scale prober -- an instrument found in most electronic-photonic foundries -- being testing at the University of Southampton.

###

This research is part of a project funded by the Engineering and Physical Sciences Research Council to transform silicon photonics and bring it to mass markets.

####

About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact:

About Optics Express

Optics Express reports on scientific and technology innovations in all aspects of optics and photonics. The bi-weekly journal provides rapid publication of original, peer-reviewed papers. It is published by The Optical Society (OSA) and led by Editor-in-Chief James Leger of the University of Minnesota, USA. Optics Express is an open-access journal and is available at no cost to readers online at OSA Publishing.

For more information, please click here

Contacts:
James Merrick

410-262-9407

@opticalsociety

Copyright © The Optical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: X. Chen, M. Milosevic, A. F. J. Runge, X. Yu, A. Z. Khohar, S. Mailis, D. J. Thomson, A. C. Peacock, S. Saito, G. T. Reed, Silicon erasable waveguides and directional couplers by germanium ion implantation for configurable photonic circuits, Opt. Express, 28, 12, 17630-17642 (2020).:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Optical computing/Photonic computing

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project