Home > Press > Oil & gas and automotive sectors will benefit from durable polymers with graphene nanotubes
![]() |
Abstract:
Oil & gas, automotive, chemical processing and other industries that deal with the harshest heat and chemical conditions are now able to utilize high-performance fluoroelastomers with graphene nanotubes that guarantee continuous production operations with less frequent shut-downs for maintenance. A new nanotube solution has entered the market, paving the way for reducing filler content and improving polymer stability in aggressive atmospheres.
Small, but critical, components such as seals, O-rings, gaskets, and hoses are exposed to the harshest environments in oil & gas operations or as parts of vehicle engines. Fluoroelastomers are often the top choice for these tiny rubber parts due to the requirement to resist synthetic oils, corrosive fumes, chemicals, ultra-high temperatures and pressure. Depending on the final application requirements, conductive compounds based on carbon black or reinforced formulations based on silica are two types of widely used FKM formulations for the most vital sectors.
New technology has been developed to further improve both of these FKM formulas, which can help to reduce material consumption and save maintenance costs. A solution based on TUBALL graphene nanotubes, produced by OCSiAl, allows manufacturers to enhance all mechanical properties including prolonged durability, and also provides electrical conductivity to FKM.
In carbon black-based FKM formulation, it has been proven that introducing as low as 3% of graphene nanotube concentrate can neutralize carbon black’s negative impacts on flexibility and elasticity, which otherwise result in hardening and a reduced life cycle for the final products. Nanotubes make it possible to achieve electrical resistivity of 5 Ohm*cm, and at the same time to improve tensile and tear parameters by 30–40% without a reduction in elasticity, according to data after heat and fuel C aging.
In silica-based FKM, the addition of graphene nanotubes results in increased resistance to synthetic fuels and heat, improved tensile strength and M100 (or modulus 100) by up to 30%, increased abrasion resistance by up to 20% and enhanced tear strength by up to 90%. Moreover, tests have proven that these improvements to mechanical properties are maintained throughout extensive heating. Additionally, graphene nanotube-enhanced, silica-based FKMs offer electrical conductivity below 10 Ohm*cm.
These advancements of high value not only in oil & gas and auto industry, but also in some specific applications, such as in production areas with automated systems and sensors where color and electrostatics are required for identification of parts by robots.
The unique properties offered by graphene nanotubes give more freedom to FKM compounders to upgrade rubber formulations by reducing filler content and improving polymer stability in austere environments, which results in economic benefits to a number of key industries.
####
For more information, please click here
Contacts:
Anastasia Zirka
PR & Advertising Manager
+7 913 989 9239
Copyright © OCSiAl Group
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Wearable sensors that detect gas leaks April 19th, 2021
JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021
FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021
Graphene/ Graphite
Possible Futures
Wearable sensors that detect gas leaks April 19th, 2021
New tech builds ultralow-loss integrated photonic circuits April 16th, 2021
Nanotubes/Buckyballs/Fullerenes/Nanorods
Optically active defects improve carbon nanotubes: Heidelberg scientists achieve defect control with a new reaction pathway April 9th, 2021
Graphene nanotubes gain traction in automotive market: OCSiAl confirms compliance with IATF 16949 March 9th, 2021
Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020
Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020
Materials/Metamaterials
FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021
Announcements
Wearable sensors that detect gas leaks April 19th, 2021
JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021
FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021
Energy
Wearable sensors that detect gas leaks April 19th, 2021
Better solutions for making hydrogen may lie just at the surface April 9th, 2021
2D materials for conducting hole currents from grain boundaries in perovskite solar cells April 2nd, 2021
A PTV-based polymer enabled organic solar cells with over 16% efficiency April 2nd, 2021
Automotive/Transportation
Chile coating and composite industry makes leap forward leveraging graphene nanotube solutions April 9th, 2021
A new industry standard for batteries: ultra-clean facility for graphene nanotube dispersions March 19th, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |