Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Getting through the bottleneck—A new class of layered perovskite with high oxygen-ion conductivity

Figure 1. The mechanism, design concept, and structural characteristics that afford high oxide-ion conductivity in CsBi2Ti2NbO10-δ
(a) The oxide-ion conductivity of CsBi2Ti2NbO10-δ is higher than those of many materials reported previously. (b) By screening sixty-nine potential materials using the bond-valence method, CsBi2Ti2NbO10-δ was selected. A new design concept for its high oxide-ion conductivity is proposed: enlarged bottlenecks. (c) Structure of CsBi2Ti2NbO10-δ (left) and the bond-valence-based energy landscape for an oxide ion at 0.6 eV (right), which marks all the possible oxide-ion migration paths. The bottlenecks for oxide-ion migration are enlarged in CsBi2Ti2NbO10-δ.
Figure 1. The mechanism, design concept, and structural characteristics that afford high oxide-ion conductivity in CsBi2Ti2NbO10-δ (a) The oxide-ion conductivity of CsBi2Ti2NbO10-δ is higher than those of many materials reported previously. (b) By screening sixty-nine potential materials using the bond-valence method, CsBi2Ti2NbO10-δ was selected. A new design concept for its high oxide-ion conductivity is proposed: enlarged bottlenecks. (c) Structure of CsBi2Ti2NbO10-δ (left) and the bond-valence-based energy landscape for an oxide ion at 0.6 eV (right), which marks all the possible oxide-ion migration paths. The bottlenecks for oxide-ion migration are enlarged in CsBi2Ti2NbO10-δ.

Abstract:
Scientists at the Tokyo Institute of Technology (Tokyo Tech) have discovered a layered perovskite that shows unusually high oxide-ion conductivity, based on a new screening method and a new design concept. Such materials are hard to come by, so the discovery of this material, the new method and design concept will make the realization of many environment-friendly technologies.

Getting through the bottleneck—A new class of layered perovskite with high oxygen-ion conductivity

Tokyo, Japan | Posted on April 29th, 2020

Upon hearing the word "conductor" in reference to chemistry, most will immediately think of the movement of electrons within a material. But electrons are not the only particles that can move across a material; oxide ions can too. Many materials scientists and engineers are currently searching for materials with high oxide-ion conductivity. Such materials have many potential applications, particularly in the development of environmentally friendly technologies. For example, oxide-ion conductors could be used in fuel cells, which directly convert clean fuel such as hydrogen into electrical energy, or in oxygen separation membranes, which could be useful in systems for capturing the CO2 we produce by burning coal or fossil fuels.

Unfortunately, high oxide-ion conductivities can be achieved by a limited number of structure families of materials. The perovskites are one such structure family. Perovskites and layered perovskites have special crystal structures that sometimes exhibit outstanding physical and chemical properties. Prof. Masatomo Yashima and colleagues from the Tokyo Institute of Technology studied a class of layered perovskites, a Dion–Jacobson phase, where two-dimensional perovskite-like "slabs" are stacked and separated by a layer of alkali metal ions, such as the cesium cation (Cs+). In their paper published in Nature Communications outer, Professor Yashima and his colleagues explain their motivation: "Numerous studies have been conducted on the electrical properties of Dion–Jacobson phases, such as their proton, lithium-ion and sodium-ion conduction. However, there are no reports on the oxide-ion conduction in Dion–Jacobson phases."

In their study, the scientists first screened sixty-nine potential Dion–Jacobson phases using the bond-valence method. This method allowed them to calculate the energy barriers for oxide-ion migration in each Dion–Jacobson phase, from which they identified CsBi2Ti2NbO10-δ (CBTN) as a promising candidate because it has a low energy barrier and does not contain expensive rare-earth elements. Further, they prepared CBTN samples and found that the oxide-ion conductivity of CBTN was higher than those of many other oxide-ion conductors, such as the conventional yttria-stabilized zirconia (Figure 1).

To understand what causes such high oxide-ion conductivity in CBTN, the scientists analyzed its crystal structure and watched how the structure changes with temperature. Using a super-high-resolution neutron diffractometer, SuperHRPD at J-PARC, they then identified several possible paths across the crystal lattice through which oxide ions could migrate at high temperatures (Figure 1c). Most importantly, they discovered a novel mechanism that seems to be one of the causes of the high oxide-ion conductivity: Rise in temperature makes oxygen vacancies appear, which facilitate oxide-ion migration. The large Cs cations and the displacement of the Bi ions in the structure at high temperatures expand the bottlenecks, enabling oxide-ion migration.

This study paves the way for finding inexpensive novel oxide-ion conductors. Based on this oxide-ion conduction mechanism, one can enhance the oxide-ion conductivities of materials of the CBTN family by modifying the chemical composition of CBTN through the addition of impurities (doping). "The present findings of high oxide-ion conductivity in this new structure family, the Dion–Jacobson-type CsBi2Ti2NbO10-δ, and the new enlarged bottleneck concept introduced, could facilitate the design of novel oxide-ion conductors based on Dion–Jacobson phases," Prof. Yashima and his colleagues conclude. The findings of this study open up the possibilities for many novel applications that will lead to a sustainable future. In fact, the present work was chosen as Editors' Highlights outer of Nature Communications.

####

For more information, please click here

Contacts:
Further Information

Professor Masatomo Yashima

Department of Chemistry, School of Science,
Tokyo Institute of Technology

Email
Tel +81-3-5734-2225

Contact

Public Relations Section, Tokyo Institute of Technology

Email
Tel +81-3-5734-2975

Hajime Hikino

Head, Public Relations Office,
High Energy Accelerator Research Organization (KEK)

Email
Tel +81-29-879-6047

Minako Abe

Public Relations Section, Japan Proton Accelerator Research Complex (J-PARC)

Email
Tel +81-29-284-4578

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Perovskites

CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020

Lead-free magnetic perovskites November 6th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Possible Futures

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Discoveries

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Announcements

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Environment

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Flash graphene rocks strategy for plastic waste: Rice University lab detours potential environmental hazard into useful material October 30th, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Nano-diamond self-charging batteries could disrupt energy as we know it August 25th, 2020

Energy

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021

Bionic idea boosts lithium-ion extraction January 1st, 2021

Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020

Solar/Photovoltaic

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021

Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020

Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project