Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Fueling the World Sustainably: Synthesizing Ammonia using Less Energy

Ammonia (NH3) is one of the most important industrial chemicals today, synthesized globally for use in fertilizers that then enable food production for approximately 70% of the world’s population. Ammonia is currently obtained by reacting nitrogen (N2) from air with hydrogen (H2). This reaction requires high energy and is, therefore, powered by fossil fuels, contributing to over 3% of the global CO2 emissions.
Ammonia (NH3) is one of the most important industrial chemicals today, synthesized globally for use in fertilizers that then enable food production for approximately 70% of the world’s population. Ammonia is currently obtained by reacting nitrogen (N2) from air with hydrogen (H2). This reaction requires high energy and is, therefore, powered by fossil fuels, contributing to over 3% of the global CO2 emissions.

Abstract:
Scientists at Tokyo Institute of Technology have developed an improved catalyst by taking the common dehydrating agent calcium hydride and adding fluoride to it. The catalyst facilitates the synthesis of ammonia at merely 50 °C, by using only half the energy that existing techniques require. This opens doors to ammonia production with low energy consumption and reduced greenhouse gas emission.



Fueling the World Sustainably: Synthesizing Ammonia using Less Energy

Tokyo, Japan | Posted on April 26th, 2020

Ammonia is a critical for making plant fertilizer, which in turn feeds approximately 70% of the world’s population. In industries, ammonia is produced via the Haber-Bosch process, where methane is first reacted with steam to produce hydrogen, and hydrogen is then reacted with nitrogen to give ammonia. (Figure 1) The problem with this process is ­­that as the temperature increases, the yield decreases. To continue to get a good yield, the pressure applied in the reaction chamber needs to be increased. This requires much energy. Further, the iron-based catalysts used for the reaction are only effective above 350 °C. Maintaining such high temperatures also requires a significant amount of energy. To top it all, the yield is only 30-40%.

­­

Fossil fuels are currently used to power the process, contributing large amounts of carbon dioxide to the atmosphere. (Figure 1) Renewable resource alternatives, such as wind energy, have been applied, but those have not proven sustainable. To increase the yield while reducing harm to the environment, therefore, the reaction must take place at low temperatures. For this to happen, catalysts that enable the reaction at low temperatures are required.

So far, such catalysts have been elusive to scientists. “Conventional catalysts lose the catalytic activity for ammonia formation from N2 and H2 gases at 100-200 °C, even if they exhibit high catalytic performance at high temperatures,” remark a group of scientists from Tokyo Institute of Technology (Tokyo Tech), Japan, who appear to have finally solved the catalyst problem. The scientists, led by Dr. Michikazu Hara, developed a catalyst that is effective even at 50 °C. “Our catalyst produces ammonia from N2 and H2 gases at 50 °C with an extremely small activation energy of 20 kJ mol-1, which is less than half that reported for conventional catalysts,” Dr. Hara and colleagues report in their paper published in Nature Communications.

Their catalyst comprises a solid solution of CaFH, with ruthenium (Ru) nanoparticles deposited on its surface. The addition of fluoride (F-) to calcium hydride (CaH2), a common dehydrating agent, is what makes the catalyst effective at lower temperatures and pressures. After conducting spectroscopic and computational analyses, the scientists propose a possible mechanism by which the catalyst facilitates ammonia production.

The calcium–fluoride (Ca–F) bond is stronger than the calcium–hydrogen (Ca–H) bond. So, the presence of the Ca–F bond weakens the Ca–H bond and the Ru is able to extract H atoms from the catalyst crystal, leaving electrons in their place. The H atoms then desorb from the Ru nanoparticles as H2 gas. This occurs even at 50 °C. The resultant charge repulsion between the trapped electrons and F- ions in the crystal lower the energy barriers for these electrons to release, thereby giving the material high electron-donating capacity. These released electrons attack the bonds between the nitrogen atoms in the N2 gas, facilitating the production of ammonia (Figure 2).

This new method of ammonia production cuts energy demands, thereby reducing the carbon dioxide emissions from the use of large amounts of fossil fuels. The findings of this study illuminate the possibility of an environmentally sustainable Haber-Bosch process, opening the door to the next revolution in agricultural food production.

Reference

Authors:

Masashi Hattori1, Shinya Iijima1, Takuya Nakao2, Hideo Hosono2, Michikazu Hara1,*

Title of original paper:

Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C

Journal:

Nature Communications

DOI:

10.1038/s41467-020-15868-8

Affiliations:

1Laboratory for Materials and Structures, Tokyo Institute of Technology

2Materials Research Center for Element Strategy, Tokyo Institute of Technology

####

About Tokyo Institute of Technology
Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of “monotsukuri,” meaning “technical ingenuity and innovation,” the Tokyo Tech community strives to contribute to society through high-impact research.

For more information, please click here

Contacts:
Emiko Kawaguchi

Public Relations group,

Tokyo Institute of Technology



+81-3-5734-2975

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Videos/Movies

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

Chemistry

Development of cost-efficient electrocatalyst for hydrogen production: Development of a highly efficient and durable electrocatalyst for water electrolysis that will lead to cost-efficient hydrogen production. Trace amounts of titanium doping on low-cost molybdenum phosphide resu October 9th, 2020

High-performance single-atom catalysts for high-temperature fuel cells: Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate the commerciali September 25th, 2020

Possible Futures

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Discoveries

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Announcements

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Scientists from NUST MISIS manage to improve metallic glasses October 23rd, 2020

Time crystals lead researchers to future computational work October 23rd, 2020

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Food/Agriculture/Supplements

Graphene nanotubes help to prevent losses at grain elevators June 2nd, 2020

Tiny particle, big payoff: Innovative virus research may save wheat and other crops May 15th, 2020

Hair surface engineering to be advanced by nano vehicles: This new researched technology can help both drug delivery and hair cosmetics industry April 10th, 2020

Carbon nanotubes forecast when vegetables spoil and buds bloom April 2nd, 2020

Environment

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Nano-diamond self-charging batteries could disrupt energy as we know it August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Membrane technology could cut emissions and energy use in oil refining July 17th, 2020

Energy

Development of cost-efficient electrocatalyst for hydrogen production: Development of a highly efficient and durable electrocatalyst for water electrolysis that will lead to cost-efficient hydrogen production. Trace amounts of titanium doping on low-cost molybdenum phosphide resu October 9th, 2020

Multi-institutional team extracts more energy from sunlight with advanced solar panels October 6th, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Shedding Light on the Development of Efficient Blue-Emitting Semiconductors September 18th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project