Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Two is better than one: Scientists fit two co-catalysts on one nanosheet for better water purification

The team of scientists worked together with Eli Stavitski (left) and Yonghua Du (right) to "see" the lighter elements in their catalyst at the Tender Energy X-ray Absorption Spectroscopy (TES) beamline at the National Synchrotron Light Source II (NSLS-II).

CREDIT
Brookhaven National Laboratory
The team of scientists worked together with Eli Stavitski (left) and Yonghua Du (right) to "see" the lighter elements in their catalyst at the Tender Energy X-ray Absorption Spectroscopy (TES) beamline at the National Synchrotron Light Source II (NSLS-II). CREDIT Brookhaven National Laboratory

Abstract:
A collaboration of scientists from the National Synchrotron Light Source II (NSLS-II)--a U.S. Department of Energy (DOE) Office of Science user facility at DOE's Brookhaven National Laboratory--Yale University, and Arizona State University has designed and tested a new two-dimensional (2-D) catalyst that can be used to improve water purification using hydrogen peroxide. While water treatment with hydrogen peroxide is environmentally friendly, the two-part chemical process that drives it is not very efficient. So far, scientists have struggled to improve the efficiency of the process through catalysis because each part of the reaction needs its own catalyst--called a co-catalyst--and the co-catalysts can't be next to each other.

Two is better than one: Scientists fit two co-catalysts on one nanosheet for better water purification

Upton, NY | Posted on April 16th, 2020

"Our overarching goal is to develop a material that increases the efficiency of the process so that no additional chemical treatment of the water would be necessary. This would be particularly useful for systems that are off-the-grid and far away from urban centers," said Jaehong Kim, Henry P. Becton Sr. Professor of Engineering and Chair of Department of Chemical and Environmental Engineering at Yale University. Kim is also a member of Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), which partly supported this research.

In their recent paper, published on March 11 in Proceedings of the National Academy of Sciences (PNAS), the team presented the design for the new 2-D catalyst and revealed its structure through measurements at NSLS-II. The trick of their new design is that the scientists managed to place two co-catalysts--one for each part of the reaction--onto two different locations on a thin nanosheet.

"Many processes need two reactions in one. This means that you need two co-catalysts. However, the challenge is that the two co-catalysts have to stay separated, otherwise they'll interact with each other and create a negative effect on the efficiency of the whole process," said Eli Stavitski, a chemist and beamline scientist at NSLS-II.

In many cases, catalysts are made from a large number of atoms to form a catalytic nanomaterial, which may seem small to a human but, in the world of chemical reactions, are still fairly large. Therefore, placing two of these materials next to each other without them interacting is quite challenging. To solve this challenge, the team took a different route.

"We used a thin nanosheet to co-host two co-catalysts for the different parts of the reaction. The beauty is in its simplicity: one of the co-catalysts--a single cobalt (Co) atom--sits in the center of the sheet, whereas the other one, a molecule called anthraquinone, is placed around the edges. This would not be possible with catalysts made of nanomaterials- since they would be 'too big' for this purpose," said Kim.

Kim and his team at Yale synthesized this new 2-D catalyst in their lab following a precise series of chemical reactions, heating, and separating steps.

After the scientists synthesized the new two-in-one catalyst, they needed to figure out if the co-catalysts would stay separated during an actual reaction and how well this new 2-D catalyst would perform. However, to really 'see' the atomic structure and chemical properties of their two-in-one catalyst in action, the scientists needed two different kinds of x-rays: hard x-rays and tender x-rays. Just like visible light, x-rays come in different colors--or wavelengths--and instead of calling them blue or red, they are called hard, tender, or soft.

"Human eyes cannot see ultraviolet or infrared light and we need special cameras to see them. Our instruments are not able to 'see' both hard and tender x-rays at the same time. So, we needed two different instruments--or beamlines--to investigate the catalyst's materials using different x-rays," said Stavitski.

The scientists started their investigation at NSLS-II's hard x-ray Inner Shell Spectroscopy (ISS) beamline using a technique called x-ray absorption spectroscopy. This technique helped the team to learn more about the local structure of the new 2-D catalyst. Specifically, they found out how many neighboring atoms each co-catalyst has, how far away these neighbors are, and how they are connected to each other.

The next stop in the investigation was NSLS-II's Tender Energy X-ray Absorption Spectroscopy (TES) beamline.

"By using the same technique at TES with tender x-rays instead of hard x-rays, we could see the light elements clearly. Traditionally, many catalysts are made from heavy elements such as cobalt, nickel, or platinum, which we can study using hard x-rays, however our 2-D catalyst also includes important lighter elements such as phosphorous. So, to learn more about the role of this lighter element in our two-in-one catalyst, we also needed tender x-rays," said Yonghua Du, a physicist and TES beamline scientist.

NSLS-II's TES beamline is a one of the few instruments within the U.S. that can complement the different hard x-ray capabilities by offering tender x-ray imaging and spectroscopic capabilities.

After their experiments, the scientists wanted to be sure that they understood how the catalyst worked and decided to simulate different candidate structures and their properties.

"We used an approach called density functional theory to understand the structures and the mechanisms that controls the efficiency of the reaction. Based on what we learned through the experiments and what we know about how atoms interact with each other, we simulated several candidate structures to determine which one was most plausible," said Christopher Muhich, assistant professor of chemical engineering at Arizona State University and also a member of NEWT.

Only by combining their expertise in synthesis, analytical experimentation, and theoretical simulation could the team create their new 2-D catalyst and demonstrate its efficiency. The team agrees that collaboration was the key to their success, and they will continue searching for the next generation of catalysts for various environmental applications.

####

For more information, please click here

Contacts:
Cara Laasch

631-344-8458

@brookhavenlab

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Imaging

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

Chemistry

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Inspired by photosynthesis, scientists double reaction quantum efficiency October 1st, 2021

Unprecedented view of a single catalyst nanoparticle at work: X-rays reveal compositional changes on active surface under reaction conditions October 1st, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

2 Dimensional Materials

Two-dimensional hybrid metal halide device allows control of terahertz emissions October 1st, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Laboratories

Unprecedented view of a single catalyst nanoparticle at work: X-rays reveal compositional changes on active surface under reaction conditions October 1st, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Scientists discover spin polarization induced by shear flow October 1st, 2021

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Tools

Inspired by photosynthesis, scientists double reaction quantum efficiency October 1st, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Tweezer grant pleases Rice researchers: University wins NSF grant to acquire ‘optical tweezer’ to manipulate micron-scale matter September 10th, 2021

Imaging single spine structural plasticity at the nanoscale level: Researchers at the Max Planck Florida Institute for Neuroscience (MPFI) have developed a new imaging technique capable of visualizing the dynamically changing structure of dendritic spines with unprecedented resol September 3rd, 2021

Water

Water as a metal July 30th, 2021

Researchers develop new graphene nanochannel water filters January 22nd, 2021

Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021

Ultra-fast gas flows through tiniest holes in 2D membranes: Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old e December 18th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Research partnerships

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

New molecular device has unprecedented reconfigurability reminiscent of brain plasticity: Device can be reconfigured multiple times simply by changing applied voltage September 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project