Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > SUWA: A hyperstable artificial protein that does not denature in high temperatures above 100C

The Onbashira Matsuri is a festival where men climb on and slide down a mountain side on large timber logs, a holy tradition dating back 1,200 years. The lumber is then used to build the one of the main shrines of Japan, the Suwa Taisha.

CREDIT
Copyright 2012-2014 Suwa Tourism Association
The Onbashira Matsuri is a festival where men climb on and slide down a mountain side on large timber logs, a holy tradition dating back 1,200 years. The lumber is then used to build the one of the main shrines of Japan, the Suwa Taisha. CREDIT Copyright 2012-2014 Suwa Tourism Association

Abstract:
Proteins denature, or "cook" in heat, irreversibly changing their structure, like how an egg boils or a slab of sirloin turns to steak. This prevents proteins from being used in applications where they would need to withstand heat. Scientists have had high expectations for proteins to be used in nanotechnology and synthetic biology. A new hyperstable artificial protein constructed at Shinshu University in collaboration with Princeton University hopes to make some of those aspirations possible with the successful development of SUWA (Super WA20), a nanobuilding block in the shape of a pillar, anointed so in honor of the Onbashira Matsuri, also known as "the pillar" festival where men climb on and slide down a mountain side on large timber logs, a holy tradition dating back 1,200 years. The lumber is then used to build the one of the main shrines of Japan, the Suwa Taisha. The hope is that these SUWA nano-pillars will go on to build things just as central to society.

SUWA: A hyperstable artificial protein that does not denature in high temperatures above 100C

Matsumoto, Japan | Posted on February 28th, 2020

Summary of this research:

A de novo protein SUWA (Super WA20) is significantly more stable than its predecessor WA20.
SUWA did not boil at 100 C, while WA20 denatures at 75 C. The denaturation midpoint temperature of SUWA protein was found to be 122 C. This is an ultra-stabilized artificial protein.
The characteristic three-dimensional structure of the dimer with a bisecting U topology of SUWA was elucidated by X-ray crystallography.
Molecular dynamics simulation suggests that the stabilization of the center of the α-helices contributes to the structural stabilization and high heat resistance in SUWA.
Protein nanobuilding blocks using SUWA, nanoscale pillars "nano-onbashira" are expected to be applied to nanotechnology and synthetic biology research in the near future.
Proteins and self-assembling protein complexes perform functions inside the living body like nanomachines making them a key component in the complex phenomena of life. Artificial design of proteins with desired functions would have many applications in biopharmacy and provide chemical reactions with low environmental impact. This nanotechnology is in the scale of molecules, 1/1,000,000 of a millimeter, making them difficult to work with, but have many promising applications.

A research group led by Ryoichi Arai of Shinshu University and Michael H. Hecht of Princeton University solved the crystal structure of the de novo protein WA20 in 2012. This current research builds upon the WA20 structure, to make the Super WA20 --aka SUWA-- recently explored in the paper published in the February issue of ACS Synthetic Biology, an American Chemical Society's academic journal.

Associate Professor Ryoichi Arai of Shinshu University Interdisciplinary Cluster of Cutting Edge Research's Institute for Biomedical Sciences and Naoya Kimura, a graduate of the Faculty of Textile Science and Technology of Shinshu University were central figures behind this new development of SUWA, a hyperstable artificial protein.

The naming of SUWA is derived from the location of the Onbashira Matsuri, which takes place in the Suwa region of Nagano Prefecture. Nagano is where Shinshu University holds its five campuses.

####

For more information, please click here

Contacts:
Hitomi Thompson

81-263-373-529

@ShinshuUni

Copyright © Shinshu University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Nanofabrication

Machine learning peeks into nano-aquariums August 31st, 2020

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment March 20th, 2020

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

Synthetic Biology

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions August 11th, 2020

Machine learning reveals recipe for building artificial proteins July 24th, 2020

Possible Futures

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Discoveries

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Announcements

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project