Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > How supercomputers are helping us link quantum entanglement to cold coffee

Abstract:
Theoretical physicists from Trinity College Dublin have found a deep link between one of the most striking features of quantum mechanics - quantum entanglement - and thermalisation, which is the process in which something comes into thermal equilibrium with its surroundings.

How supercomputers are helping us link quantum entanglement to cold coffee

Dublin, Ireland | Posted on February 1st, 2020

Their results are published today [Friday 31st January 2020] in the prestigious journal Physical Review Letters.

We are all familiar with thermalisation - just think how your coffee reaches room temperature over time. Quantum entanglement on the other hand is a different story.

Yet work performed by Marlon Brenes, PhD Candidate, and Professor John Goold from Trinity, in collaboration with Silvia Pappalardi and Professor Alessandro Silva at SISSA in Italy, shows how the two are inextricably linked.

Explaining the importance of the discovery, Professor Goold, leader of Trinity's QuSys group, explains:

"Quantum entanglement is a counterintuitive feature of quantum mechanics, which allows particles that have interacted with each other at some point in time to become correlated in a way which is not possible classically. Measurements on one particle affect the outcomes of measurements of the other-- even if they are light years apart. Einstein called this effect 'spooky action at a distance'."

"It turns out that entanglement is not just spooky but actually ubiquitous and in fact what is even more amazing is that we live in an age where technology is starting to exploit this feature to perform feats which were thought to be impossible just a number of years go. These quantum technologies are being developed rapidly in the private sector with companies such as Google and IBM leading the race."

But what has all this got to do with cold coffee?

Professor Goold elaborates:

"When you prepare a cup of coffee and leave it for a while it will cool down until it reaches the temperature of its surroundings. This is thermalisation. In physics we say that the process is irreversible - as we know, our once-warm coffee won't cool down and then magically warm back up. How irreversibility and thermal behaviour emerges in physical systems is something which fascinates me as a scientist as it applies on scales as small as atoms, to cups of coffee, and even to the evolution of the universe itself. In physics, statistical mechanics is the theory which aims at understanding this process from a microscopic perspective. For quantum systems the emergence of thermalisation is notoriously tricky and is a central focus of this current research."

So what's all this got to do with entanglement and what do your results say?

"In statistical mechanics there are various different ways, known as ensembles, in which you can describe how a system thermalizes, all of which are believed to be equivalent when you have a large system (roughly on scales of 10^23 atoms). However, what we show in our work is that not only is entanglement present in the process, but its structure is very different depending on which way you choose to describe your system. So, it gives us a way to test foundational questions in statistical mechanics. The idea is general and can be applied to a range of systems as small as a few atoms and as large as blackholes."

Marlon Brenes, PhD candidate at Trinity and first author of the paper, used super-computers to simulate quantum systems to test the idea.

Brenes, a numerical specialist, said:

"The numerical simulations for this project that I performed are at the limit of what can currently be done at the level of high-performance computing. To run the code I used the national facility, ICHEC, and the new Kay machine there. So, as well as being a nice fundamental result the work helped us really push the boundaries of this type of computational approach and establish that our codes and the national architecture are performing at the cutting edge."

####

For more information, please click here

Contacts:
John Goold

353-189-64114

@tcddublin

Copyright © Trinity College Dublin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Quantum Physics

CEA-Leti Clears a Path to Developing Ultralow Loss, High-Power Photonics in UV through Mid-Infrared Wavelengths ‘Breakthrough Will Lead to Quantum Computing, Imaging, Sensing, Communication, and Clocks’ February 3rd, 2020

A quantum of solid February 1st, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Physics

A quantum of solid February 1st, 2020

The Wave of the Future: Researchers achieve first successful generation and detection of pure spin currents in antiferromagnetic materials January 29th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

Quantum physics: On the way to quantum networks January 24th, 2020

Quantum communication

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Possible Futures

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Discoveries

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate: Scientists in Korea are first to observe an unprecedented way in which graphene forms a hybrid layer that prevents copper corrosion February 14th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Announcements

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate: Scientists in Korea are first to observe an unprecedented way in which graphene forms a hybrid layer that prevents copper corrosion February 14th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project