Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block

Using a simple rod-like building block with hydroxamic acids at both ends scientists at the Technical University of Munich created self-assembling porous, chrial nano structures.

CREDIT
Bodong Zhang / TUM
Using a simple rod-like building block with hydroxamic acids at both ends scientists at the Technical University of Munich created self-assembling porous, chrial nano structures. CREDIT Bodong Zhang / TUM

Abstract:
Nanoscience can arrange minute molecular entities into nanometric patterns in an orderly manner using self-assembly protocols. Scientists at the Technical University of Munich (TUM) have functionalized a simple rod-like building block with hydroxamic acids at both ends. They form molecular networks that not only display the complexity and beauty of mono-component self-assembly on surfaces; they also exhibit exceptional properties.

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block

Munich, Germany | Posted on January 16th, 2020

Designing components for molecular self-assembly calls for functionalities that 'interlock'. For example, our genetic information is encoded in two DNA strands, zipped together in a 'spiral staircase' double helix structure in a self-assembly process that is stabilized by hydrogen bonding.

Inspired by nature's 'zippers' researchers at the Technical University of Munich aim to construct functional nanostructures to push the boundaries of man-made structures.

Building blocks for complex nanostructures

Scientists at the Technical University of Munich, diverse in discipline, nationality and gender, joined forces to explore a new feature in two-dimensional architectures: a chemical group named hydroxamic acid.

A conceptually simple building block was prepared at the Chair of Proteomics and Bioanalytics: a rod-like molecule with a hydroxamic acid group at each end. This building block was then transferred to the Chair of Surface and Interface Physics, where its assembly was inspected on atomically planar silver and gold surfaces.

A nano-porous network

A combination of advanced microscopy tools, spectroscopy and density functional theory investigations found that the molecular building block adapts its shape somewhat in the environment of the supporting surface and its neighboring molecules. This affords an unusual manifold of supramolecular surface motifs: two to six molecules held together by intermolecular interactions.

Only a handful of these motifs self-organized into 2-D crystals. Among them, an unparalleled network emerged, whose patterns evoke images of sliced lemons, snowflakes or rosettes. They feature three differently sized pores able to snuggly hold individual small molecules of gas such as carbon monoxide in the smallest, or small proteins like insulin in the largest.

"In this regard, it is a milestone in the tessellations achieved by molecular nanostructures and the number of different pores expressed in crystalline 2-D networks," says Dr. Anthoula Papageorgiou, last author of the publication. "It thus offers unique opportunities in bottom-up nano-templating, which we will explore further."

Nanocages with a twist

Like our left and right hands, the shape of two mirrored cage structures cannot be superimposed. Since the 19th century, academics have characterized this type of object symmetry as 'chiral', from the ancient Greek χε?ρ (hand). These kinds of molecules are frequently found in natural compounds. Chirality influences interactions of polarized light and magnetic properties and plays a vital role in life.

For example, our olfactory receptors react very differently to the two mirror images of the limonene molecule: one smells like lemon, the other like pine. This so-called chiral recognition is a process that can determine whether a molecule acts as medicine or poison.

The inner walls of the obtained nanostructure cages offer sites that can direct guest molecules. The researchers observed such a process in some of the larger pores, where three of the same molecules assembled as a chiral object. At room temperature, this object is in motion, like a music box ballerina, leading to a blurred image.

In their future work, the team hopes to steer these kinds of phenomena for chiral recognition and artificial nano-machinery.

###

Funding was provided by the Postdoctoral Council of China, the China Scholarship Council, the International Max Planck Research School of Advanced Photon Science, the European Union's research project 2D-INK, the European Research Council (project NanoSurfs), the German Research Foundation (via Cluster of Excellence Munich?Centre for Advanced Photonics and Heisenberg professorship). Computations were performed on the Shared Hierarchical Academic Research Computing Network (SHARCNET) and the Cedar, Graham, and Niagara clusters of Compute/Calcul Canada.

####

For more information, please click here

Contacts:
Dr. Andreas Battenberg

49-892-891-0510

Copyright © Technical University of Munich (TUM)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

News and information

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

2 Dimensional Materials

Generation and Manipulation of spin currents for advanced electronic devices January 9th, 2020

NUS scientists create world’s first monolayer amorphous film January 9th, 2020

Saving Moore’s Law: Electrical and computer engineering researchers propose 3D integration with 2D materials December 27th, 2019

From 3D to 2D and back: Reversible conversion of lipid spheres into ultra-thin sheets December 20th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Nanotech company granted FDA Fast Track for treatment of head & neck cancer February 10th, 2020

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

Possible Futures

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Self Assembly

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

"Inverse Design for Self-Assembly: Patchy Particles, Machine Learning, and the Truth about Entropy" December 3rd, 2019

Discoveries

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate: Scientists in Korea are first to observe an unprecedented way in which graphene forms a hybrid layer that prevents copper corrosion February 14th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Announcements

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate: Scientists in Korea are first to observe an unprecedented way in which graphene forms a hybrid layer that prevents copper corrosion February 14th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Bubble-capturing surface helps get rid of foam: Bubbly buildup can hinder many industrial processes, but a new method can reduce or even eliminate it February 12th, 2020

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

MTU engineers examine lithium battery defects January 28th, 2020

Nanobiotechnology

Novel formulation permits use of toxin from rattlesnake venom to treat chronic pain: Researchers Butantan Institute succeeded in reducing the toxicity and potentiating the analgesic effect of crotoxin by encapsulating it in nanostructured silica -- the results of tests in an anim February 14th, 2020

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease February 14th, 2020

Nanotech company granted FDA Fast Track for treatment of head & neck cancer February 10th, 2020

Arrowhead Reports Interim Clinical Data on Cardiometabolic Candidates ARO-APOC3 and ARO-ANG3 February 5th, 2020

Research partnerships

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

A consensus statement establishes the protocols to assess and report stability of perovskite photovoltaic devices February 1st, 2020

New European Project to Fast-Track Adoption Of Cyber-Physical Systems (CPS) by SMEs: DigiFed to Demonstrate Potential of CPS Digital Technologies in Hardware Security, Human-Machine Interaction, and Autonomy for Small & Midsized Companies January 29th, 2020

The Wave of the Future: Researchers achieve first successful generation and detection of pure spin currents in antiferromagnetic materials January 29th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project