Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > The first highway trials show that nanotube-reinforced asphalt concrete prevents cracks and ruts

Abstract:
Trials of the world’s first experimental section of road pavement with graphene nanotubes have demonstrated a 67% increase in resistance to rutting and cracking. The next step in the industrial application of the technology is designing a road network with a nanotube-reinforced pavement.

The first highway trials show that nanotube-reinforced asphalt concrete prevents cracks and ruts

Luxembourg | Posted on January 16th, 2020

The Russian company ECO Group has successfully tested road bitumen modified with TUBALL graphene nanotubes produced by OCSiAl. The Ministry of Transport of the Russian Federation had found the formulation to be promising and thus authorized an experimental section of road pavement with nanotubes to be laid on the M-4 Don federal highway.



“Graphene nanotubes form a reinforcing network in asphalt concrete, which improves its physical and mechanical properties: rutting resistance, ring-and-ball softening point, ultimate compressive strength, and fatigue life,” says Alexander Zimnyakov, OCSiAl’s Vice President. “This significantly boosts asphalt concrete’s performance, which is especially important for roads subjected to intense traffic loads at high temperatures.”



Nanotubes are introduced into bitumen using adhesive agents, and the modified bitumen is then added to asphalt concrete. Nanotubes improve the properties of road bitumen even at very low concentrations, from 0.025% to 0.035% in the total weight of bitumen, while the content of bitumen itself in asphalt concrete does not exceed 6%. The tests showed an increase in the softening point by 10°C and a more than twofold increase in the viscosity of the binding agent.



As a result, asphalt concretes containing bitumen with TUBALL nanotubes demonstrate a 67% improvement in rutting resistance and a 67.5% boost in fatigue cracking resistance.



Now, after these successful trials, the next step in the nationwide application of this invention involves designing a road network with a nanotube-reinforced pavement.



“The Expert Council under the Ministry of Transport of the Russian Federation, with the participation of experts from various ministries and departments, recognized the innovative nature of ECO Group’s asphalt concrete modification, approved its application in road construction, and recommended considering its use in road construction,” said ECO Group’s General Director, Alexander Greiz.



Graphene nanotubes (also known as single wall carbon nanotubes) are an incredibly strong and light material that is widely used to change the properties of various materials. Their ability to improve asphalt concrete pavements is being researched by teams of scientists around the world. This solution is one of the first to be green-lighted for testing on real roads.

####

For more information, please click here

Contacts:
Anastasia Zirka
PR & Advertising Manager
+7 913 989 9239

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Graphene/ Graphite

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

Graphene nanotubes help to prevent losses at grain elevators June 2nd, 2020

Possible Futures

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Nanotubes/Buckyballs/Fullerenes/Nanorods

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Prodigiosin-based solution has selective activity against cancer cells: A new nanoformulation was described by Kazan University's Bionanotechnology Lab in Frontiers in Bioengineering and Biotechnology June 12th, 2020

Exotic nanotubes move in less-mysterious ways: Rice scientists, engineers show boron nitride’s promise for composites, biomedical applications June 2nd, 2020

Oil & gas and automotive sectors will benefit from durable polymers with graphene nanotubes May 14th, 2020

Discoveries

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Announcements

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Construction

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Sustainable structural material for plastic substitute May 11th, 2020

Scientists came up with nanoconcrete for casting under negative temperature conditions March 6th, 2020

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project