Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > "Inverse Design for Self-Assembly: Patchy Particles, Machine Learning, and the Truth about Entropy"

Abstract:
An NSF Distinguished Lecture by Professor SHARON GLOTZER (University of Michigan)

December 19, 2019 2:00 PM to
December 19, 2019 3:00 PM
National Science Foundation, Room E3410 (3rd floor), 2415 Eisenhower Ave. (across from Eisenhower Metro station), Alexandria, VA

Abstract

Professor Glotzerís research on computational assembly science and engineering aims toward predictive materials design of colloidal and soft matter. Her introduction of the notion of "patchy particles," a conceptual approach to nanoparticle design, has informed wide-ranging investigations of self-assembly. She showed that entropy alone can assemble shapes into many structures, which has implications for materials science, thermodynamics, mathematics, nanotechnology, biology and more. Her groupís "shape space diagram" shows how matter self-organizes based on the shapes of the constituent elements, making it possible to predict what kind of ordered material will emerge from disorder. Her group develops and disseminates powerful open-source software, including the particle simulation toolkit, HOOMD-blue, which allows for fast simulation of materials on graphics processors.

"Inverse Design for Self-Assembly: Patchy Particles, Machine Learning, and the Truth about Entropy"

Alexandria, VA | Posted on December 3rd, 2019

Biographical Sketch

Sharon C. Glotzer is Department Chair of Chemical Engineering, Distinguished University Professor of Engineering, Collegiate Professor of Chemical Engineering, and Professor of Materials Science and Engineering, Physics, Applied Physics, and Macromolecular Science and Engineering at the University of Michigan in Ann Arbor. She is a member of the National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences, as well as a fellow of the American Physical Society, the American Association for the Advancement of Science, the American Institute of Chemical Engineers, the Materials Research Society, and the Royal Society of Chemistry. She received her B.S. degree from the University of California, Los Angeles, and her Ph.D. degree from Boston University, both in physics. Prior to joining the University of Michigan in 2001, she worked for eight years at the National Institute of Standards and Technology where she was co-founder and Director of the NIST Center for Theoretical and Computational Materials Science. She is the recipient of numerous awards, including the 2019 Rahman Prize for Computational Physics of the American Physical Society, the 2016 Alpha Chi Sigma Award from the American Institute of Chemical Engineers, the 2014 MRS Medal from the Materials Research Society, and the 2008 Stine Award from the American Institute of Chemical Engineers.

This lecture is sponsored by the Directorate for Mathematical and Physical Sciences (MPS) and co-sponsored by the Directorate for Computer and Information Science and Engineering (CISE).

Meeting Type
Lecture

####

For more information, please click here

Contacts:
Andrew J. Lovinger
(703) 292-4933

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Let the europium shine brighter January 21st, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Physics

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Possible Futures

Let the europium shine brighter January 21st, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Self Assembly

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Super-strong magnetic supercrystals can assemble themselves October 25th, 2019

Announcements

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Artificial Intelligence

Brain-like functions emerging in a metallic nanowire network: Emerging fluctuation-based functionalities are expected to open a way to novel memory device technology December 27th, 2019

GLOBALFOUNDRIES Qualifies Synopsys Fusion Design Platform on 12LP FinFET Platform October 11th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Events/Classes

CEA-Leti Will Present 21 Papers (Five Invited) at Photonics West 2020 & Host a Workshop January 9th, 2020

International Conference and Exhibition on Nanotechnology - Nano Seoul 2020 January 3rd, 2020

Onto Innovation to Present at the 22nd Annual Needham Growth Conference January 3rd, 2020

At CES 2020, CEA-Leti Will Demo System that Eliminates Interference in LiFi Networks: System from CEA-Leti Detects Interference And Optimizes Data Transmission Rates for Each Nearby Device December 20th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project