Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Small magnets reveal big secrets: Work by international research team could have wide-ranging impact on information technology applications

Physicist Igor Barsukov is an assistant professor at UC Riverside. (UCR/Barsukov lab)
Physicist Igor Barsukov is an assistant professor at UC Riverside. (UCR/Barsukov lab)

Abstract:
An international research team led by a physicist at the University of California, Riverside, has identified a microscopic process of electron spin dynamics in nanoparticles that could impact the design of applications in medicine, quantum computation, and spintronics.

Small magnets reveal big secrets: Work by international research team could have wide-ranging impact on information technology applications

Riverside, CA | Posted on October 28th, 2019

Magnetic nanoparticles and nanodevices have several applications in medicine — such as drug delivery and MRI — and information technology. Controlling spin dynamics — the movement of electron spins — is key to improving the performance of such nanomagnet-based applications.

“This work advances our understanding of spin dynamics in nanomagnets,” said Igor Barsukov, an assistant professor in the Department of Physics and Astronomy and lead author of the study that appears today in Science Advances.

Electron spins, which precess like spinning tops, are linked to each other. When one spin begins to precess, the precession propagates to neighboring spins, which sets a wave going. Spin waves, which are thus collective excitations of spins, behave differently in nanoscale magnets than they do in large or extended magnets. In nanomagnets, the spin waves are confined by the size of the magnet, typically around 50 nanometers, and therefore present unusual phenomena.

In particular, one spin wave can transform into another through a process called “three magnon scattering,” a magnon being a quantum unit of a spin wave. In nanomagnets, this process is resonantly enhanced, meaning it is amplified for specific magnetic fields.

In collaboration with researchers at UC Irvine and Western Digital in San Jose, as well as theory colleagues in Ukraine and Chile, Barsukov demonstrated how three magnon scattering, and thus the dimensions of nanomagnets, determines how these magnets respond to spin currents. This development could lead to paradigm-shifting advancements.

“Spintronics is leading the way for faster and energy-efficient information technology,” Barsukov said. “For such technology, nanomagnets are the building blocks, which need to be controlled by spin currents.”

Barsukov explained that despite its technological importance, a fundamental understanding of energy dissipation in nanomagnets has been elusive. The research team’s work provides insights into the principles of energy dissipation in nanomagnets and could enable engineers who work on spintronics and information technology to build better devices.

“Microscopic processes explored in our study may also be of significance in the context of quantum computation where researchers currently are attempting to address individual magnons,” Barsukov said. “Our work can potentially impact multiple areas of research.”

Barsukov was joined in the research by H. K. Lee, A. A. Jara, Y.-J. Chen, A. M. Gonçalves, C. Sha, and I. N. Krivorotov of UC Irvine; J. A. Katine of Western Digital in San Jose; R. E. Arias of the University of Chile in Santiago; and B. A. Ivanov of the National Academy of Sciences of Ukraine and the National University of Science and Technology in Russia.

The collaborative study was primarily funded by the U.S. Army Research Office, Defense Threat Reduction Agency, and National Science Foundation, or NSF, as well as by agencies in Chile, Brazil, Ukraine, and Russia. Barsukov was funded by the NSF.

####

For more information, please click here

Contacts:
Iqbal Pittalwala

(951) 827-6050
@UCR_Sciencenews

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download study:

Related News Press

News and information

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

Magnetism

Generation and Manipulation of spin currents for advanced electronic devices January 9th, 2020

Tiny magnetic particles enable new material to bend, twist, and grab December 13th, 2019

How to induce magnetism in graphene: Elusive molecule predicted in the 1970s finally synthesized December 11th, 2019

Magnets for the second dimension November 15th, 2019

Govt.-Legislation/Regulation/Funding/Policy

MTU engineers examine lithium battery defects January 28th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Possible Futures

MTU engineers examine lithium battery defects January 28th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Spintronics

Generation and Manipulation of spin currents for advanced electronic devices January 9th, 2020

Paving the way for spintronic RAMs: A deeper look into a powerful spin phenomenon December 27th, 2019

How to induce magnetism in graphene: Elusive molecule predicted in the 1970s finally synthesized December 11th, 2019

Toward more efficient computing, with magnetic waves: Circuit design offers a path to 'spintronic' devices that use little electricity and generate practically no heat November 29th, 2019

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2020 First Quarter Results January 24th, 2020

International Summit on Nanomedicine & Nanotechnology January 24th, 2020

How to keep boron inside cells during radiotherapy: a simple novel approach to cancer treatment January 24th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites don’t need liquid water to work January 14th, 2020

Quantum Computing

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

ORNL researchers advance performance benchmark for quantum computers January 3rd, 2020

In leap for quantum computing, silicon quantum bits establish a long-distance relationship: Princeton scientists demonstrate that two silicon quantum bits can communicate across relatively long distances in a turning point for the technology December 27th, 2019

A distinct spin on atomic transport: Work that demonstrates simultaneous control over transport and spin properties of cold atoms establishes a framework for exploring concepts of spintronics and solid-state physics November 8th, 2019

Discoveries

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

Quantum physics: On the way to quantum networks January 24th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Old Molecule, New Tricks: Chemistry professors develop an electrochemical method for extracting uranium, and potentially other metal ions, from solution January 24th, 2020

Announcements

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

American Chemical Society names Philip Proteau as new editor-in-chief of the Journal of Natural Products January 24th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

A consensus statement establishes the protocols to study stability of perovskite photovoltaic devices January 24th, 2020

Military

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites don’t need liquid water to work January 14th, 2020

Research partnerships

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project