Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Achieving Quantum Supremacy: UC Santa Barbara/Google researchers demonstrate the power of 53 entangled qubits

Google’s quantum supreme cryostat with Sycamore inside

 

 

Photo Credit: ERIC LUCERO/GOOGLE, INC.
Google’s quantum supreme cryostat with Sycamore inside Photo Credit: ERIC LUCERO/GOOGLE, INC.

Abstract:
Researchers in UC Santa Barbara/Google scientist John Martinis’ group have made good on their claim to quantum supremacy. Using 53 entangled quantum bits (“qubits”), their Sycamore computer has taken on — and solved — a problem considered intractable for classical computers.

Achieving Quantum Supremacy: UC Santa Barbara/Google researchers demonstrate the power of 53 entangled qubits

Santa Barbara, CA | Posted on October 24th, 2019

“A computation that would take 10,000 years on a classical supercomputer took 200 seconds on our quantum computer,” said Brooks Foxen, a graduate student researcher in the Martinis Group. “It is likely that the classical simulation time, currently estimated at 10,000 years, will be reduced by improved classical hardware and algorithms, but, since we are currently 1.5 billion times faster, we feel comfortable laying claim to this achievement.”

The feat is outlined in a paper in the journal Nature.

The milestone comes after roughly two decades of quantum computing research conducted by Martinis and his group, from the development of a single superconducting qubit to systems including architectures of 72 and, with Sycamore, 54 qubits (one didn’t perform) that take advantage of the both awe-inspiring and bizarre properties of quantum mechanics.

“The algorithm was chosen to emphasize the strengths of the quantum computer by leveraging the natural dynamics of the device,” said Ben Chiaro, another graduate student researcher in the Martinis Group. That is, the researchers wanted to test the computer’s ability to hold and rapidly manipulate a vast amount of complex, unstructured data.

“We basically wanted to produce an entangled state involving all of our qubits as quickly as we can,” Foxen said, “and so we settled on a sequence of operations that produced a complicated superposition state that, when measured, returned output ("bitstring") with a probability determined by the specific sequence of operations used to prepare that particular superposition." The exercise, which was to verify that the circuit’s output correspond to the sequence used to prepare the state, sampled the quantum circuit a million times in just a few minutes, exploring all possibilities — before the system could lose its quantum coherence.

‘A complex superposition state’
“We performed a fixed set of operations that entangles 53 qubits into a complex superposition state,” Chiaro explained. “This superposition state encodes the probability distribution. For the quantum computer, preparing this superposition state is accomplished by applying a sequence of tens of control pulses to each qubit in a matter of microseconds. We can prepare and then sample from this distribution by measuring the qubits a million times in 200 seconds.”

“For classical computers, it is much more difficult to compute the outcome of these operations because it requires computing the probability of being in any one of the 2^53 possible states, where the 53 comes from the number of qubits — the exponential scaling is why people are interested in quantum computing to begin with,” Foxen said. “This is done by matrix multiplication, which is expensive for classical computers as the matrices become large.”

According to the new paper, the researchers used a method called cross-entropy benchmarking to compare the quantum circuit’s bitstring to its “corresponding ideal probability computed via simulation on a classical computer” to ascertain that the quantum computer was working correctly.

“We made a lot of design choices in the development of our processor that are really advantageous,” said Chiaro. Among these advantages, he said, are the ability to experimentally tune the parameters of the individual qubits as well as their interactions.

The John Martinis Group at their Google facility
The UCSB/Google Quantum AI group

Photo Credit: Matt Perko, UC Santa Barbara

While the experiment was chosen as a proof-of-concept for the computer, the research has resulted in a very real and valuable tool: a certified random number generator. Useful in a variety of fields, random numbers can ensure that encrypted keys can’t be guessed, or that a sample from a larger population is truly representative, leading to optimal solutions for complex problems and more robust machine learning applications. The speed with which the quantum circuit can produce its randomized bitstring is so great that there is no time to analyze and “cheat” the system.

“Quantum mechanical states do things that go beyond our day-to-day experience and so have the potential to provide capabilities and application that would otherwise be unattainable,” commented Joe Incandela, UC Santa Barbara’s vice chancellor for research. “The team has demonstrated the ability to reliably create and repeatedly sample complicated quantum states involving 53 entangled elements to carry out an exercise that would take millennia to do with a classical supercomputer. This is a major accomplishment. We are at the threshold of a new era of knowledge acquisition.”

Looking ahead
With an achievement like “quantum supremacy,” it’s tempting to think that the UC Santa Barbara/Google researchers will plant their flag and rest easy. But for Foxen, Chiaro, Martinis and the rest of the UCSB/Google AI Quantum group, this is just the beginning.

“It’s kind of a continuous improvement mindset,” Foxen said. “There are always projects in the works.” In the near term, further improvements to these “noisy” qubits may enable the simulation of interesting phenomena in quantum mechanics, such as thermalization, or the vast amount of possibility in the realms of materials and chemistry.

In the long term, however, the scientists are always looking to improve coherence times, or, at the other end, to detect and fix errors, which would take many additional qubits per qubit being checked. These efforts have been running parallel to the design and build of the quantum computer itself, and ensure the researchers have a lot of work before hitting their next milestone.

“It’s been an honor and a pleasure to be associated with this team,” Chiaro said. “It’s a great collection of strong technical contributors with great leadership and the whole team really synergizes well.”

####

For more information, please click here

Contacts:
Sonia Fernandez
(805) 893-4765

Shelly Leachman
(805) 893-8726

Copyright © University of California, Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project