Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability

Abstract:
UNY Polytechnic Institute (SUNY Poly) announced that three faculty-led research projects in areas ranging from semiconductor packaging and semiconductor modeling to genetic sequencing will receive a total of $1.5 million in funding from four companies with operations in New York State. This funding is part of the second round of the Matching Investment Program (MIP) by the New York State Center for Advanced Technology in Nanomaterials and Nanoelectronics (CATN2), which seeks to advance leading-edge faculty research through these critical industry partnerships.

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability

Albany, NY | Posted on October 18th, 2019

“On behalf of SUNY Poly, I am proud that these research teams, led by members of our incredible faculty, have been selected to receive this second round of CATN2 MIP funding and industry support, which will underpin valuable research that is focused on key areas, from advanced materials for next-generation semiconductors to expanding our genetic sequencing capabilities, as well as efforts to improve reliability modeling for the design and fabrication of computer chips,” said SUNY Poly Interim President Dr. Grace Wang. “These awards not only showcase the exciting research our faculty members are undertaking, but also the powerful partnerships that SUNY Poly is engaged in to further strengthen New York State’s high-tech ecosystem while catalyzing exciting educational opportunities for students.”



The CATN2 completed the second-round funding competition for fiscal year 2018-2019 under the CATN2 MIP to catalyze faculty/staff-led projects that can lead to commercial success in collaboration with New York State-based companies. This effort aims to leverage and expand SUNY Poly’s research, development, and deployment capabilities. Awards under the second round totaled $140,000, with commitments of resources from industry partners totaling an additional $1,500,000, for a total project investment of $1,640,000. The MIP funding originates from a portion of a $900,000 grant from Empire State Development’s Division of Science, Technology, and Innovation (NYSTAR) to support SUNY Poly’s CATN2’s operations.



NYSTAR Executive Director Matt Watson said, “These faculty-led projects are tremendous opportunities to develop and commercialize disruptive technology that will lead to job creation and other economic benefits for New York State.”



“With this latest round of funding, we continue to witness the impact of SUNY Poly’s CATN2 on meaningful public-private research collaborations that are enabled by state-of-the-art resources and knowledge, which drive SUNY Poly’s leadership in New York State’s innovation economy,” said SUNY Poly Interim Vice President of Research Advancement and Graduate Studies Dr. Shadi Shahedipour-Sandvik. “These research projects will further support exciting educational opportunities for our students by exposing them to industry relevant problems and solutions.”



“The three research teams whose projects are being supported through this second round of MIP funding are great examples of SUNY Poly’s faculty who are advancing critical applied research, that, when combined with the institution’s leading-edge capabilities, leverage our industry partners’ technology and continue to advance New York State’s leadership in transitioning innovation to commercial success,” said Michael Fancher, Director of the New York State CATN2 and principal investigator for cyber physical systems, clean energy projects, and entrepreneurial programs.



The CATN2 MIP awards, including primary investigators, total amount of the award with industry match, and summary of the research to be undertaken as part of the 2018–2019 Round 2 grants, include:


Project Title (capability): Establishing a New Reliability Assessment Capability for Characterization and Modeling of the Reliability of Advanced Node Conductors through Pulsed Power

PI: Dr. Jim Lloyd

Budget: $1,540,000

Summary: This project, in anticipated collaboration with GLOBALFOUNDRIES and Mentor, a Siemens business, will result in a new and unique reliability assessment capability that will be able to provide semiconductor designers and manufacturers with unprecedented reliability modeling. One outcome of this project will be the development of testing protocols so that product reliability can be predicted accurately and economically with the confidence that it can be extrapolated to any operational environment.

Impact: The use of the laboratory and the acquisition of the server will prepare the research team to support the efforts of several equipment manufacturers, chip makers, and other industrial partners in the lab as well as creating a new revenue generating resource to support a growing test and reliability program. Additionally, the new capability will provide training opportunities for SUNY Poly and other students, as well as technicians and engineers that are employed by companies that use this new capability.


Project Title (capability): Establishing Genetic Sequencing Capability

PI: Dr. Michael Fasullo

Budget: $43,656

Summary: The advent of Next Generation Sequencing (NGS) has led to a genomics revolution. While the biggest initial impact was on genotyping of the entire genome, diverse fields, including toxicology, epigenomics, developmental biology, and cancer biology, have seen large developments. The purpose of this project is to purchase an iSeq™ 100 Sequencing System to help spur investment in genomics, bioinformatics, and computation at SUNY Poly. The three main goals of this project are to: first, expedite acquisition of high-quality sequencing data; second, utilize the equipment to facilitate collaboration with other scientific collaborators on- and off-campus; and third, use the equipment to enhance student training and the educational infrastructure of SUNY Poly.

Impact: This project will result in obtaining preliminary data to pursue additional federal grant funding, enhance the research infrastructure at SUNY Poly, and provide additional training opportunities for graduate and undergraduate students at SUNY Poly. Additionally, the improved capability and enhanced research infrastructure will open the door to increased collaborations, revenue generation, and the potential development of a genomics-related center.


Project Title (capability): Polymeric Processing on 200 and 300mm Substrates

PI: Dr. Nathaniel Cady

Budget: $38,850

Summary: This project is building on a first round MIP grant that has established a robust polymeric hot embossing process capability (using high-precision silicon-based molds). During this project, Dr. Cady is collaborating with Applied Materials, Inc. This project will continue to expand the institution’s 200mm facility capabilities to enable more proficient processing of polymeric materials. Specifically, this project will pursue integration of metallic contacts and interconnects onto polymeric substrates for various applications.

Impact: The involvement of Applied Materials in this project strengthens this growing relationship and also provides new packaging capabilities at SUNY Poly that will be leveraged by other faculty to create or expand existing industrial relationships.



For more information about the program and the previous round of funding, please visit: https://sunypoly.edu/news/news-release-suny-poly-professors-awarded-125-million-nys-center-advanced-technology.html .

####

About SUNY Polytechnic Institute
SUNY Poly is New York’s globally recognized, high-tech educational ecosystem. SUNY Poly offers undergraduate and graduate degrees in the emerging disciplines of nanoscience and nanoengineering, as well as cutting-edge nanobioscience programs at its Albany campus, and undergraduate and graduate degrees in technology, including engineering, cybersecurity, computer science, and the engineering technologies; professional studies, including business, communication, and nursing; and arts and sciences, including natural sciences, mathematics, humanities, and social sciences at its Utica campus; thriving athletic, recreational, and cultural programs, events, and activities complement the campus experience. As the world’s most advanced, university-driven research enterprise, SUNY Poly boasts billions of dollars in high-tech investments and hundreds of corporate partners since its inception. For information visit www.sunypoly.edu.



About SUNY Poly’s CATN2

The mission of the New York State Center for Advanced Technology in Nanomaterials and Nanoelectronics (CATN2) at SUNY Polytechnic Institute (SUNY Poly) and its College of Nanoscale Science and Engineering (CNSE) is to drive systematic progression in technology transitions, market adoption, skills attainment and entrepreneurial growth by aligning SUNY Poly’s Applied Research Capabilities (SPARC) with industry cooperation partners through each phase in the research, development, & deployment (RD&D) commercialization continuum.



About NYSTAR

Empire State Development's Division of Science, Technology and Innovation (NYSTAR) advances technology innovation and commercialization in New York State. Its 70+ funded centers provide direct assistance to companies from start-up through maturity, leveraging the state’s unparalleled investment in world-class technology assets and expertise.

For more information, please click here

Contacts:
Steve Ference, Director of University Communications

(518) 956-7319 |

Copyright © SUNY Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Scientists discover spin polarization induced by shear flow October 1st, 2021

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Academic/Education

Lifeboat Foundation Guardian Winner Jeff Bezos Donates One Million to Lifeboat Foundation Dream Project Winner Teachers in Space July 30th, 2021

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

LPU signs MoU with Bruker India for Research Cooperation in Nanotechnology and Material Science September 3rd, 2019

Chip Technology

Photon-pair source with pump rejection filter fabricated on single CMOS chip: New integrated source provides critical component for chip-based quantum photonic systems October 15th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

Nanomedicine

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Directly into the brain: A 3D multifunctional and flexible neural interface: Novel design of brain chip implant allows for measuring neuronal activity while simultaneously delivering drugs to the implant site October 1st, 2021

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Industrial

Breathing new life into fuel cells August 6th, 2021

Conductive, durable coatings with graphene nanotubes now available to the Turkish market June 3rd, 2021

Chile coating and composite industry makes leap forward leveraging graphene nanotube solutions April 9th, 2021

Oxford Instruments Asylum Research Releases Variable Magnetic Field Module accessory for Jupiter XR, Large Sample Atomic Force Microscope March 26th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Nanobiotechnology

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project