Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria

Chemist Erin Carlson led research showing that nanoparticles can cause resistance in bacteria.

Credit: Patrick O'Leary, University of Minnesota
Chemist Erin Carlson led research showing that nanoparticles can cause resistance in bacteria. Credit: Patrick O'Leary, University of Minnesota

Abstract:
Over the last two decades, nanotechnology has improved many everyday products, from microelectronics to sunscreens. Nanoparticles (particles just a few hundred atoms in size) are ending up in the environment by the ton, but scientists are still unclear about the long-term effects of these super-small particles.

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria

Alexandria, VA | Posted on October 17th, 2019

In a first-of-its-kind study, published in Chemical Science, researchers have shown that nanoparticles may have a bigger impact on the environment than previously thought.

Researchers at the University of Minnesota, through the National Science Foundation Center for Sustainable Nanotechnology, found that a common, non-disease-causing bacterium in the environment, Shewanella oneidensis MR-1, developed rapid resistance when repeatedly exposed to nanoparticles used in making lithium ion batteries, the rechargeable batteries used in portable electronics and electric vehicles. The resistance means that the fundamental biochemistry and biology of the bacteria are changing.

The results of the study are unusual, the researchers say. Bacterial resistance usually occurs because bacteria become resistant to attempts to kill them. In this case, the nanoparticles used in lithium ion batteries were not intended to kill bacteria. This is the first report of non-antibacterial nanoparticles causing resistance in bacteria.

Bacteria are prevalent in lakes and soil where there is a delicate balance of organisms. Other organisms feed on the microbes, and the resistant bacteria could have effects scientists can't yet predict.

"Research that advances technology and sustains our environment is a priority for the Division of Chemistry," said Michelle Bushey, program director for the NSF Chemical Centers for Innovation Program. "This work reveals the unexplored and long-term impacts some nanoparticles have on the living organisms around us. This discovery at the chemistry-biology interface is a first step toward developing new sustainable materials and practices and providing the groundwork for possible remediation approaches."

####

For more information, please click here

Contacts:
NSF Public Affairs, (703) 292-7090

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article:

Related News Press

News and information

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Govt.-Legislation/Regulation/Funding/Policy

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Possible Futures

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Discoveries

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Announcements

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Safety-Nanoparticles/Risk management

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

NIOSH requests data to help develop exposure limits for nanomaterials February 1st, 2020

Plastic waste disintegrates into nanoparticles, study finds December 28th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project