Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Borophene on silver grows freely into an atomic ‘skin’: Rice scientists lead effort to improve manufacture of valuable 2D material

An illustration shows how edges are connected at the corners of a borophene flake. Materials scientists led by Rice University have predicted that the shape of borophene, the 2D allotrope of boron, can be controlled. (Credit: Zhuhua Zhang/Rice University/Nanjing University of Aeronautics and Astronautics)
An illustration shows how edges are connected at the corners of a borophene flake. Materials scientists led by Rice University have predicted that the shape of borophene, the 2D allotrope of boron, can be controlled. (Credit: Zhuhua Zhang/Rice University/Nanjing University of Aeronautics and Astronautics)

Abstract:
Borophene has a nearly perfect partner in a form of silver that could help the trendy two-dimensional material grow to unheard-of lengths.

Borophene on silver grows freely into an atomic ‘skin’: Rice scientists lead effort to improve manufacture of valuable 2D material

Houston, TX | Posted on October 1st, 2019

A well-ordered lattice of silver atoms makes it possible to speed the growth of pristine borophene, the atom-thick allotrope of boron that so far can only form via synthesis by molecular-beam epitaxy (MBE).

By using a silver substrate and through careful manipulation of temperature and deposition rate, scientists have discovered they can grow elongated hexagon-shaped flakes of borophene. They suggested the use of a proper metal substrate could facilitate the growth of ultrathin, narrow borophene ribbons.

New work published in Science Advances by researchers at Rice and Northwestern universities, Nanjing University of Aeronautics and Astronautics and Argonne National Laboratory will help streamline the manufacture of the conductive material, which shows potential for use in wearable and transparent electronics, plasmonic sensors and energy storage.

That potential has fueled efforts to make it easier to grow, led by Rice materials scientist Boris Yakobson, a theorist who predicted that borophene could be synthesized. He and collaborators Mark Hersam at Northwestern and lead author Zhuhua Zhang, a Rice alumnus and now a professor at Nanjing, have now demonstrated through theory and experimentation that large-scale, high-quality samples of borophene are not only possible but also allow qualitative understanding of their growth patterns.

Unlike the repeating atomic lattices found in graphene and hexagonal boron nitride, borophene incorporates a regular, woven-in array of "vacancies," missing atoms that leave hexagonal holes among the triangles. This not only affects the material's electronic properties but also influences how new atoms join the flake as it is being formed.

The Yakobson lab's calculations showed the edge energies -- atoms that are less stable along the edges of 2D materials than those in the interior -- are significantly lower than those in graphene and boron nitride and that the conditions can be manipulated to tune the edges for optimum growth of ribbons.

Initial calculations showed borophene in equilibrium should form as a rectangle, but experiments proved otherwise.

The confounding factor was in the flake's edges that, forced by the vacancies, appear in variations of zigzag and armchair configurations. Atoms settle one by one into the "kinks" that appear along the edges, but as armchairs are more energetically stable and present a higher barrier to the atoms, they prefer to join the zigzags. Rather than extending the flakes in all directions, the atoms are selective about where they settle and elongate the structure instead.

"On the atomic scale, edges don’t act as though you cut the lattice with a pair of scissors," Yakobson said. "The dangling bonds you create reconnect with their neighbors, and the edge atoms adapt slightly different, reconstructed configurations.

"So the origin of the shapes must not lie in equilibrium," he said. "They are caused by the kinetics of growth, how fast or slow the side edges advance. Opportunely, we had developed a theoretical framework for graphene, a nanoreactor model that works for other 2D materials, including boron."

Controlling the flow of atoms as well as temperature gives the researchers a simpler way to control borophene synthesis.

"Silver (111) provides a landing for boron atoms, which then diffuse along the surface to find the edges of a growing borophene flake," Zhang said. "Upon arrival, the boron atoms are lifted onto the edges by silver, but how difficult such a lift is depends on the edge's orientation. As a result, a pair of opposite zigzag edges grow very slowly while all other edges grow very fast, manifested as an elongation of the boron flake."

The researchers said the ability to grow needlelike ribbons of borophene gives them the potential to serve as atom-width conductive wires for nanoelectronics devices.

"Graphene-based electronics that have been conceived so far mostly rely on ribbonlike building blocks,” Yakobson said. "Metallic boron ribbons with high conductivity will be a natural match as interconnects in circuitry."

Co-authors of the paper are Xiaolong Liu of Northwestern, Nathan Guisinger of Argonne’s Center for Nanoscale Materials, Andrew Mannix of Argonne and Northwestern, and Zhili Hu of Nanjing and Rice. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry at Rice. Hersam is the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern.

The National Natural Science Foundation of China, the State Key Laboratory of Mechanics and Control of Mechanical Structures, the Department of Energy, the Office of Naval Research and the National Science Foundation supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Yakobson Research Group:

Hersam Research Group:

Related News Press

News and information

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

2 Dimensional Materials

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Excitons form superfluid in certain 2D combos: Rice University researchers find ‘paradox’ in ground-state bilayers June 15th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

Graphene/ Graphite

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Porous graphene ribbons doped with nitrogen for electronics and quantum computing July 10th, 2020

Graphene: It is all about the toppings: To fully exploit the potential of the'wonder material' graphene, it has to be combined with other materials July 10th, 2020

Flexible Electronics

Solid-state intramolecular motions in continuous fibers for fluorescent humidity sensor July 16th, 2020

Wearable electronics

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Govt.-Legislation/Regulation/Funding/Policy

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Possible Futures

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Sensors

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

Solid-state intramolecular motions in continuous fibers for fluorescent humidity sensor July 16th, 2020

Polymers can fine-tune attractions between suspended nanocubes: Interactions between hollow silica nanocubes suspended in a solution can be adjusted by varying the concentration of polymer molecules added to the mixture. June 19th, 2020

Single-spin electron paramagnetic resonance spectrum with kilohertz spectral resolution June 19th, 2020

Discoveries

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Announcements

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Russian scientists identified energy storage mechanism of sodium-ion battery anode July 24th, 2020

New cobalt-free lithium-ion battery reduces costs without sacrificing performance July 17th, 2020

Biosynthetic sustainable hierarchical solar steam generator July 10th, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Research partnerships

Discovery of disordered nanolayers in intermetallic alloys: Resolving alloys' strength-ductility trade-off and thermal instability July 24th, 2020

Russian scientists identified energy storage mechanism of sodium-ion battery anode July 24th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

'Blinking" crystals may convert CO2 into fuels: Unusual nanoparticles could benefit the quest to build a quantum computer July 17th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project