Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Borophene on silver grows freely into an atomic ‘skin’: Rice scientists lead effort to improve manufacture of valuable 2D material

An illustration shows how edges are connected at the corners of a borophene flake. Materials scientists led by Rice University have predicted that the shape of borophene, the 2D allotrope of boron, can be controlled. (Credit: Zhuhua Zhang/Rice University/Nanjing University of Aeronautics and Astronautics)
An illustration shows how edges are connected at the corners of a borophene flake. Materials scientists led by Rice University have predicted that the shape of borophene, the 2D allotrope of boron, can be controlled. (Credit: Zhuhua Zhang/Rice University/Nanjing University of Aeronautics and Astronautics)

Abstract:
Borophene has a nearly perfect partner in a form of silver that could help the trendy two-dimensional material grow to unheard-of lengths.

Borophene on silver grows freely into an atomic ‘skin’: Rice scientists lead effort to improve manufacture of valuable 2D material

Houston, TX | Posted on October 1st, 2019

A well-ordered lattice of silver atoms makes it possible to speed the growth of pristine borophene, the atom-thick allotrope of boron that so far can only form via synthesis by molecular-beam epitaxy (MBE).

By using a silver substrate and through careful manipulation of temperature and deposition rate, scientists have discovered they can grow elongated hexagon-shaped flakes of borophene. They suggested the use of a proper metal substrate could facilitate the growth of ultrathin, narrow borophene ribbons.

New work published in Science Advances by researchers at Rice and Northwestern universities, Nanjing University of Aeronautics and Astronautics and Argonne National Laboratory will help streamline the manufacture of the conductive material, which shows potential for use in wearable and transparent electronics, plasmonic sensors and energy storage.

That potential has fueled efforts to make it easier to grow, led by Rice materials scientist Boris Yakobson, a theorist who predicted that borophene could be synthesized. He and collaborators Mark Hersam at Northwestern and lead author Zhuhua Zhang, a Rice alumnus and now a professor at Nanjing, have now demonstrated through theory and experimentation that large-scale, high-quality samples of borophene are not only possible but also allow qualitative understanding of their growth patterns.

Unlike the repeating atomic lattices found in graphene and hexagonal boron nitride, borophene incorporates a regular, woven-in array of "vacancies," missing atoms that leave hexagonal holes among the triangles. This not only affects the material's electronic properties but also influences how new atoms join the flake as it is being formed.

The Yakobson lab's calculations showed the edge energies -- atoms that are less stable along the edges of 2D materials than those in the interior -- are significantly lower than those in graphene and boron nitride and that the conditions can be manipulated to tune the edges for optimum growth of ribbons.

Initial calculations showed borophene in equilibrium should form as a rectangle, but experiments proved otherwise.

The confounding factor was in the flake's edges that, forced by the vacancies, appear in variations of zigzag and armchair configurations. Atoms settle one by one into the "kinks" that appear along the edges, but as armchairs are more energetically stable and present a higher barrier to the atoms, they prefer to join the zigzags. Rather than extending the flakes in all directions, the atoms are selective about where they settle and elongate the structure instead.

"On the atomic scale, edges don’t act as though you cut the lattice with a pair of scissors," Yakobson said. "The dangling bonds you create reconnect with their neighbors, and the edge atoms adapt slightly different, reconstructed configurations.

"So the origin of the shapes must not lie in equilibrium," he said. "They are caused by the kinetics of growth, how fast or slow the side edges advance. Opportunely, we had developed a theoretical framework for graphene, a nanoreactor model that works for other 2D materials, including boron."

Controlling the flow of atoms as well as temperature gives the researchers a simpler way to control borophene synthesis.

"Silver (111) provides a landing for boron atoms, which then diffuse along the surface to find the edges of a growing borophene flake," Zhang said. "Upon arrival, the boron atoms are lifted onto the edges by silver, but how difficult such a lift is depends on the edge's orientation. As a result, a pair of opposite zigzag edges grow very slowly while all other edges grow very fast, manifested as an elongation of the boron flake."

The researchers said the ability to grow needlelike ribbons of borophene gives them the potential to serve as atom-width conductive wires for nanoelectronics devices.

"Graphene-based electronics that have been conceived so far mostly rely on ribbonlike building blocks,” Yakobson said. "Metallic boron ribbons with high conductivity will be a natural match as interconnects in circuitry."

Co-authors of the paper are Xiaolong Liu of Northwestern, Nathan Guisinger of Argonne’s Center for Nanoscale Materials, Andrew Mannix of Argonne and Northwestern, and Zhili Hu of Nanjing and Rice. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry at Rice. Hersam is the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern.

The National Natural Science Foundation of China, the State Key Laboratory of Mechanics and Control of Mechanical Structures, the Department of Energy, the Office of Naval Research and the National Science Foundation supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Yakobson Research Group:

Hersam Research Group:

Related News Press

News and information

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Graphene/ Graphite

Graphene takes off in composites for planes and cars: The Graphene Flagship identified the strategic advantages of integrating graphene into fibre composites, used to build planes and cars December 5th, 2019

NAUM’19 reviewed the increasing contribution of graphene nanotubes to sustainable development November 21st, 2019

Better biosensor technology created for stem cells: Rutgers innovation may help guide treatment of Alzheimer's, Parkinson's diseases November 12th, 2019

2 Dimensional Materials

A cheaper way to scale up atomic layer deposition November 15th, 2019

Magnets for the second dimension November 15th, 2019

Better biosensor technology created for stem cells: Rutgers innovation may help guide treatment of Alzheimer's, Parkinson's diseases November 12th, 2019

Can't get thinner than this: synthesis of atomically flat boron sheets August 23rd, 2019

Wearable electronics

New health monitors are flexible, transparent and graphene enabled September 13th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Flexible Electronics

New health monitors are flexible, transparent and graphene enabled September 13th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Possible Futures

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Sensors

Better biosensor technology created for stem cells: Rutgers innovation may help guide treatment of Alzheimer's, Parkinson's diseases November 12th, 2019

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Thorium superconductivity: Scientists discover a new high-temperature superconductor November 8th, 2019

Nanoscale manipulation of light leads to exciting new advancement: UNM researchers find decreasing the density of nanoparticles in ordered arrays produces exceptional field enhancements October 11th, 2019

Discoveries

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Growing nano-tailored surfaces using micellar brushes November 29th, 2019

Announcements

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

New electrodes could increase efficiency of electric vehicles and aircraft November 22nd, 2019

Argonne collaborates to review current battery recycling processes for electric vehicles November 8th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Research partnerships

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide: Such bacteria may, in the future, contribute to new, carbon-efficient technologies November 27th, 2019

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

Research shows old newspapers can be used to grow carbon nanotubes: Newspapers provide a green, economical way to produce carbon nanotubes November 22nd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project