Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Turning heat into electricity: A new thermoelectric material developed at FEFU: Young scientists from FEFU manufactured new thermoelectric material based on strontium titanate and titanium oxide

Graphical abstract

CREDIT
FEFU press-office
Graphical abstract CREDIT FEFU press-office

Abstract:
Young scientists from Far Eastern Federal University (FEFU) developed the concept and manufactured samples of a new thermoelectric material -- biphase nanoceramics based on strontium titanate SrTiO3 and titanium oxide TiO2. It can help to transform exhaust heat (heat losses amounting to about 60% of heat exchange) into electrical energy and to protect devices operating at temperatures above 1,000? from overheating. The article was published in the special Advanced Thermoelectric Materials issue of the Materials journal.

Turning heat into electricity: A new thermoelectric material developed at FEFU: Young scientists from FEFU manufactured new thermoelectric material based on strontium titanate and titanium oxide

Vladivostok, Russia | Posted on September 27th, 2019

The team from FEFU worked together with scientists from the Institute of Chemistry of the Far Eastern Department of the Russian Academy of Sciences and has already obtained the first experimental samples of biphase nanoceramics. The material has high mechanical performance, thermal, and chemical resistance. The team is currently testing its thermoelectric properties.

'Many technological properties cause the emission of exhaust heat at high temperatures. For example, the temperature on the outer side of an exhaust pipe can reach about 700C. In these conditions popular thermoelectric materials based on bismuth telluride Bi2Te3 and lead telluride PbTe face increased risks of thermal breakdown which may lead to environmental pollution with heavy metals. Our task was to develop a high-quality thermoelectric material that would be chemically stable and resistant to high temperatures,' said Alexey Zavjalov, a researcher at the School of Natural Sciences, FEFU, who developed the composition of the new material.

The team from FEFU suggested a biphase ceramic system based on metal oxides: strontium titanate SrTiO3 and titanium oxide TiO2. The oxides have high thermal and chemical resistance at temperatures above 1,000 but do not show excellent thermoelectric properties on their own. The biphase structure and nanosized grains considerably increase the material's thermoelectric efficacy.

Increased density and mechanical performance of the material along with the nanosize of its grains and high concentration of intergranular boundaries are important properties for extreme temperature conditions. In the new material they were obtained by means of high-speed consolidation of SrCO3 and anatase TiO2 nanopowders under pressure. This process is called reactive spark plasma sintering.

'The new material may be used not only for secondary exhaust heat processing, but also as a part of high-tech applications as an active heat buffer. TiO2-SrTiO3 based nanoceramics can increase the service life and characteristics of devices that operate at temperatures above 1,000,' said Denis Kosyanov, a senior researcher at the Center for National Technological Initiatives, FEFU, and the head of the group.

The team of young researchers from FEFU won a grant of the Russian Foundation for Basic Research for the development of new materials for laser technologies based on 'optical ceramics - thermoelectrics' heterostructures in 2018. The concept of the new thermoelectric ceramics is a result of grant work.

###

FEFU runs a Materials priority project, and a Center for National Technological Initiatives in Neurotechnologies, VR/AR Technologies (grant No. 1/1251/2018 dated October 16, 2018). The researchers working in these areas develop scientific and technical bases for multifunctional ceramic materials to be used in microelectronics, lighting technologies, and radiochemistry.

The research was carried out within the framework of grant No. 18-29-11044 provided by the Russian Foundation for Basic Research.

####

For more information, please click here

Contacts:
Alexander Zverev

Copyright © Far Eastern Federal University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Govt.-Legislation/Regulation/Funding/Policy

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

The nature of nuclear forces imprinted in photons June 30th, 2020

Possible Futures

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Discoveries

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Materials/Metamaterials

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Macroscopic quantum interference in an ultra-pure metal June 26th, 2020

Process for 'two-faced' nanomaterials may aid energy, information tech June 26th, 2020

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Announcements

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020

Spontaneous formation of nanoscale hollow structures could boost battery storage June 12th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project