Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Turning heat into electricity: A new thermoelectric material developed at FEFU: Young scientists from FEFU manufactured new thermoelectric material based on strontium titanate and titanium oxide

Graphical abstract

CREDIT
FEFU press-office
Graphical abstract CREDIT FEFU press-office

Abstract:
Young scientists from Far Eastern Federal University (FEFU) developed the concept and manufactured samples of a new thermoelectric material -- biphase nanoceramics based on strontium titanate SrTiO3 and titanium oxide TiO2. It can help to transform exhaust heat (heat losses amounting to about 60% of heat exchange) into electrical energy and to protect devices operating at temperatures above 1,000°? from overheating. The article was published in the special Advanced Thermoelectric Materials issue of the Materials journal.

Turning heat into electricity: A new thermoelectric material developed at FEFU: Young scientists from FEFU manufactured new thermoelectric material based on strontium titanate and titanium oxide

Vladivostok, Russia | Posted on September 27th, 2019

The team from FEFU worked together with scientists from the Institute of Chemistry of the Far Eastern Department of the Russian Academy of Sciences and has already obtained the first experimental samples of biphase nanoceramics. The material has high mechanical performance, thermal, and chemical resistance. The team is currently testing its thermoelectric properties.

'Many technological properties cause the emission of exhaust heat at high temperatures. For example, the temperature on the outer side of an exhaust pipe can reach about 700°C. In these conditions popular thermoelectric materials based on bismuth telluride Bi2Te3 and lead telluride PbTe face increased risks of thermal breakdown which may lead to environmental pollution with heavy metals. Our task was to develop a high-quality thermoelectric material that would be chemically stable and resistant to high temperatures,' said Alexey Zavjalov, a researcher at the School of Natural Sciences, FEFU, who developed the composition of the new material.

The team from FEFU suggested a biphase ceramic system based on metal oxides: strontium titanate SrTiO3 and titanium oxide TiO2. The oxides have high thermal and chemical resistance at temperatures above 1,000° but do not show excellent thermoelectric properties on their own. The biphase structure and nanosized grains considerably increase the material's thermoelectric efficacy.

Increased density and mechanical performance of the material along with the nanosize of its grains and high concentration of intergranular boundaries are important properties for extreme temperature conditions. In the new material they were obtained by means of high-speed consolidation of SrCO3 and anatase TiO2 nanopowders under pressure. This process is called reactive spark plasma sintering.

'The new material may be used not only for secondary exhaust heat processing, but also as a part of high-tech applications as an active heat buffer. TiO2-SrTiO3 based nanoceramics can increase the service life and characteristics of devices that operate at temperatures above 1,000°,' said Denis Kosyanov, a senior researcher at the Center for National Technological Initiatives, FEFU, and the head of the group.

The team of young researchers from FEFU won a grant of the Russian Foundation for Basic Research for the development of new materials for laser technologies based on 'optical ceramics - thermoelectrics' heterostructures in 2018. The concept of the new thermoelectric ceramics is a result of grant work.

###

FEFU runs a Materials priority project, and a Center for National Technological Initiatives in Neurotechnologies, VR/AR Technologies (grant No. 1/1251/2018 dated October 16, 2018). The researchers working in these areas develop scientific and technical bases for multifunctional ceramic materials to be used in microelectronics, lighting technologies, and radiochemistry.

The research was carried out within the framework of grant No. 18-29-11044 provided by the Russian Foundation for Basic Research.

####

For more information, please click here

Contacts:
Alexander Zverev

Copyright © Far Eastern Federal University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Possible Futures

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Discoveries

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Growing nano-tailored surfaces using micellar brushes November 29th, 2019

Materials/Metamaterials

Toward more efficient computing, with magnetic waves: Circuit design offers a path to 'spintronic' devices that use little electricity and generate practically no heat November 29th, 2019

NAUM’19 reviewed the increasing contribution of graphene nanotubes to sustainable development November 21st, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Disordered proteins become stable, 'super-sticky' materials: Improved protein control could lead to wound-healing gels and other applications November 3rd, 2019

Announcements

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

New electrodes could increase efficiency of electric vehicles and aircraft November 22nd, 2019

Argonne collaborates to review current battery recycling processes for electric vehicles November 8th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project