Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Hard as a diamond? Scientists predict new forms of superhard carbon: A study identifies dozens of new carbon structures that are expected to be superhard, including some that may be about as hard as diamonds

An illustration depicts three of 43 newly predicted superhard carbon structures. The cages colored in blue are structurally related to diamond, and the cages colored in yellow and green are structurally related to lonsdaleite.

CREDIT
Credit: Bob Wilder / University at Buffalo, adapted from Figure 3 in P. Avery et al., npj Computational Materials, Sept. 3, 2019.
An illustration depicts three of 43 newly predicted superhard carbon structures. The cages colored in blue are structurally related to diamond, and the cages colored in yellow and green are structurally related to lonsdaleite. CREDIT Credit: Bob Wilder / University at Buffalo, adapted from Figure 3 in P. Avery et al., npj Computational Materials, Sept. 3, 2019.

Abstract:
Superhard materials can slice, drill and polish other objects. They also hold potential for creating scratch-resistant coatings that could help keep expensive equipment safe from damage.

Hard as a diamond? Scientists predict new forms of superhard carbon: A study identifies dozens of new carbon structures that are expected to be superhard, including some that may be about as hard as diamonds

Buffalo, NY | Posted on September 9th, 2019

Now, science is opening the door to the development of new materials with these seductive qualities.

Researchers have used computational techniques to identify 43 previously unknown forms of carbon that are thought to be stable and superhard -- including several predicted to be slightly harder than or nearly as hard as diamonds. Each new carbon variety consists of carbon atoms arranged in a distinct pattern in a crystal lattice.

The study -- published on Sept. 3 in the journal npj Computational Materials -- combines computational predictions of crystal structures with machine learning to hunt for novel materials. The work is theoretical research, meaning that scientists have predicted the new carbon structures but have not created them yet.

"Diamonds are right now the hardest material that is commercially available, but they are very expensive," says University at Buffalo chemist Eva Zurek. "I have colleagues who do high-pressure experiments in the lab, squeezing materials between diamonds, and they complain about how expensive it is when the diamonds break.

"We would like to find something harder than a diamond. If you could find other materials that are hard, potentially you could make them cheaper. They might also have useful properties that diamonds don't have. Maybe they will interact differently with heat or electricity, for example."

Zurek, PhD, a professor of chemistry in UB College of Arts and Sciences, conceived of the study and co-led the project with Stefano Curtarolo, PhD, professor of mechanical engineering and materials science at Duke University.

The quest for hard materials

Hardness relates to a material's ability to resist deformation. As Zurek explains, it means that "if you try to indent a material with a sharp tip, a hole will not be made, or the hole will be very small."

Scientists consider a substance to be superhard if it has a hardness value of over 40 gigapascals as measured through an experiment called the Vickers hardness test.

All of the study's 43 new carbon structures are predicted to meet that threshold. Three are estimated to exceed the Vickers hardness of diamonds, but only by a little bit. Zurek also cautions that there is some uncertainty in the calculations.

The hardest structures the scientists found tended to contain fragments of diamond and lonsdaleite -- also called hexagonal diamond -- in their crystal lattices. In addition to the 43 novel forms of carbon, the research also newly predicts that a number of carbon structures that other teams have described in the past will be superhard.

Speeding up discovery of superhard materials

The techniques used in the new paper could be applied to identify other superhard materials, including ones that contain elements other than carbon.

"Very few superhard materials are known, so it's of interest to find new ones," Zurek says. "One thing that we know about superhard materials is that they need to have strong bonds. Carbon-carbon bonds are very strong, so that's why we looked at carbon. Other elements that are typically in superhard materials come from the same side of the periodic table, such as boron and nitrogen."

To conduct the study, researchers used XtalOpt, an open-source evolutionary algorithm for crystal structure prediction developed in Zurek's lab, to generate random crystal structures for carbon. Then, the team employed a machine learning model to predict the hardness of these carbon species. The most promising hard and stable structures were used by XtalOpt as "parents" to spawn additional new structures, and so on.

The machine learning model for estimating hardness was trained using the Automatic FLOW (AFLOW) database, a huge library of materials with properties that have been calculated. Curtarolo's lab maintains AFLOW and previously developed the machine learning model with Olexandr Isayev's group at the University of North Carolina at Chapel Hill.

"This is accelerated material development. It's always going to take time, but we use AFLOW and machine learning to greatly accelerate the process," Curtarolo says. "The algorithms learn, and if you have trained the model well, the algorithm will predict the properties of a material -- in this case, hardness -- with reasonable accuracy."

"You can take the best materials predicted using computational techniques and make them experimentally," says study co-author Cormac Toher, PhD, assistant research professor of mechanical engineering and materials science at Duke University.

###

The first and second authors of the new study are UB PhD graduate Patrick Avery and UB PhD student Xiaoyu Wang, both in Zurek's lab. In addition to these researchers, Zurek, Curtarolo and Toher, the co-authors of the paper include Corey Oses and Eric Gossett of Duke University and Davide Proserpio of the UniversitŠ degi Studi di Milano.

The research was funded by the U.S. Office of Naval Research, with additional support from the UniversitŠ degi Studi di Milano, and computational support from UB's Center for Computational Research.

npj Computational Materials -- part of the Nature Partner Journals series -- is a Nature Research journal published by Springer Nature in partnership with Shanghai Institute of Ceramics, Chinese Academy of Sciences.

####

For more information, please click here

Contacts:
Charlotte Hsu

716-645-4655

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Breaking the temperature barrier in small-scale materials testing February 28th, 2020

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

180 Degree Capital Corp. Reports 15.9% Annual Increase and 0.3% Quarter Increase in Net Asset Value Per Share to $3.06 as of December 31, 2019 February 24th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

Govt.-Legislation/Regulation/Funding/Policy

Black phosphorous tunnel field-effect transistor as an alternative ultra-low power switch? February 21st, 2020

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Nanotech company granted FDA Fast Track for treatment of head & neck cancer February 10th, 2020

Possible Futures

Breaking the temperature barrier in small-scale materials testing February 28th, 2020

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

KIST researchers develop high-capacity EV battery materials that double driving range: Everyday materials and simple process used to develop new battery anode materials! Cost-effectiveness and simplicity of process and excellent properties of materials enable mass-production and February 21st, 2020

Discoveries

Breaking the temperature barrier in small-scale materials testing February 28th, 2020

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

Russian scientists found an effective way to obtain fuel for hydrogen engines: One of the most promising alternative energy sources is hydrogen, which can be extracted from water and air February 21st, 2020

Materials/Metamaterials

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate: Scientists in Korea are first to observe an unprecedented way in which graphene forms a hybrid layer that prevents copper corrosion February 14th, 2020

MTU engineers examine lithium battery defects January 28th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Announcements

Breaking the temperature barrier in small-scale materials testing February 28th, 2020

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

180 Degree Capital Corp. Reports 15.9% Annual Increase and 0.3% Quarter Increase in Net Asset Value Per Share to $3.06 as of December 31, 2019 February 24th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Breaking the temperature barrier in small-scale materials testing February 28th, 2020

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

KIST researchers develop high-capacity EV battery materials that double driving range: Everyday materials and simple process used to develop new battery anode materials! Cost-effectiveness and simplicity of process and excellent properties of materials enable mass-production and February 21st, 2020

Military

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites donít need liquid water to work January 14th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Bubble-capturing surface helps get rid of foam: Bubbly buildup can hinder many industrial processes, but a new method can reduce or even eliminate it February 12th, 2020

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

MTU engineers examine lithium battery defects January 28th, 2020

Research partnerships

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

A consensus statement establishes the protocols to assess and report stability of perovskite photovoltaic devices February 1st, 2020

New European Project to Fast-Track Adoption Of Cyber-Physical Systems (CPS) by SMEs: DigiFed to Demonstrate Potential of CPS Digital Technologies in Hardware Security, Human-Machine Interaction, and Autonomy for Small & Midsized Companies January 29th, 2020

The Wave of the Future: Researchers achieve first successful generation and detection of pure spin currents in antiferromagnetic materials January 29th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project