Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Moving faster in a crowd

Molecular model of the crowded interior of a bacterial cell. New research shows that particles can move more quickly through crowds if the crowding molecules are non-uniformly distributed.

CREDIT
Adrian H Elcock, CC BY 2.0 ( https://creativecommons.org/licenses/by/2.0/legalcode )
Molecular model of the crowded interior of a bacterial cell. New research shows that particles can move more quickly through crowds if the crowding molecules are non-uniformly distributed. CREDIT Adrian H Elcock, CC BY 2.0 ( https://creativecommons.org/licenses/by/2.0/legalcode )

Abstract:
Cell particles move more quickly through a crowded cellular environment when the crowding molecules are non-uniformly distributed. New research also shows that particle transport in crowded cells can actually be faster than movement in a non-crowded environment as long as the particles are moving from densely crowded areas to less crowded areas. Understanding the rate at which particles move in these environments can help researchers to better understand cellular processes that require multiple molecules to "find" each other in the crowded environment of the cell. A paper describing the research, by a team of Penn State scientists, appears online in the journal ACS Nano.

Moving faster in a crowd

University Park, PA | Posted on August 30th, 2019

"Crowding is common in living systems at different length scales, from busy hallways down to dense cellular cytoplasm," said Ayusman Sen, Verne M. Willaman Professor of Chemistry and Distinguished Professor of Chemistry and Chemical Engineering at Penn State and one of the leaders of the research team. "The insides of cells are very, very crowded with proteins, macromolecules and organelles. Molecules that are involved in chemical reactions required by the cell must be transported through this crowded, viscous environment to find their partner reagents. If the environment is uniformly crowded, movement slows, but we know that the inside of a cell is non-uniform; there are gradients of macromolecules and other species. So, we were interested in how these gradients would influence transport at the nanoscale."

The researchers compared the movement of various "tracer" colloids--insoluble particles suspended in a liquid--through different environments using microfluidics. A microfluidic device can be filled with different solutions in which the researchers establish gradients--from high to low--of "crowder" macro-molecules in the fluid. The tracers, which can be large or small, hard or soft and deformable, are fluorescently labeled allowing the researchers to track their movement with a confocal microscope.

"We were surprised to see that the tracers moved faster in gradients of crowders than they did through a fluid with no crowders at all," said Farzad Mohajerani, a graduate student in chemical engineering at Penn State and co-first author of the paper. "We think that the densely packed crowders actually put a pressure on the tracers to force them toward less dense areas. Large tracer molecules moved faster than small ones, and soft, deformable tracers moved faster than hard ones."

"The soft, deformable tracers are better representatives of actual species moving around in cells," said Matthew Collins, a graduate student in chemistry at Penn State and co-first author of the paper. "We think that they can move faster because, unlike hard particles, they can squeeze through tighter areas."

"Our experiments and model not only show that molecules can move faster through gradients of macromolecular crowding, we think that these rates of movement may increase further inside actual living cells where other active moving molecules could increase the crowding pressure," said Sen.

###

In addition to Sen, Collins, and Mohajerani, the research team at Penn State included Subhadip Ghosh, Rajarshi Guha, Tae-Hee Lee, Peter J. Butler, and Darrel Velegol. The research was funded by the U.S. National Science Foundation.

####

For more information, please click here

Contacts:
Sam Sholtis

814-865-1390

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020

New insights into memristive devices by combining incipient ferroelectrics and graphene November 27th, 2020

Microfluidics/Nanofluidics

Jet-printing microfluidic devices on demand November 6th, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment March 20th, 2020

Govt.-Legislation/Regulation/Funding/Policy

NIST sensor experts invent supercool mini thermometer November 17th, 2020

Arrowhead Interim Clinical Data Demonstrate ARO-AAT Treatment Improved Multiple Biomarkers of Alpha-1 Liver Disease November 13th, 2020

Making 3-D Nanosuperconductors with DNA: Complex 3-D nanoscale architectures based on DNA self-assembly can conduct electricity without resistance and may provide a platform for fabricating quantum computing and sensing devices November 10th, 2020

Face mask aims to deactivate virus to protect others: Antiviral layer attacks respiratory droplets to make mask wearer less infectious October 30th, 2020

Possible Futures

Russian scientists improve 3D printing technology for aerospace composites using oil waste November 27th, 2020

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020

Nanomedicine

An ionic forcefield for nanoparticles: Tunable coating allows hitch-hiking nanoparticles to slip past the immune system to their target November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Arrowhead Pharmaceuticals Reports Fiscal 2020 Year End Results November 23rd, 2020

Discoveries

An ionic forcefield for nanoparticles: Tunable coating allows hitch-hiking nanoparticles to slip past the immune system to their target November 27th, 2020

Russian scientists improve 3D printing technology for aerospace composites using oil waste November 27th, 2020

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

Announcements

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020

New insights into memristive devices by combining incipient ferroelectrics and graphene November 27th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Russian scientists improve 3D printing technology for aerospace composites using oil waste November 27th, 2020

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 29th, 2020

Nanobiotechnology

An ionic forcefield for nanoparticles: Tunable coating allows hitch-hiking nanoparticles to slip past the immune system to their target November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Arrowhead Pharmaceuticals Reports Fiscal 2020 Year End Results November 23rd, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project