Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Study models new method to accelerate nanoparticles

Geometry of tilted plate nanoparticle injector

CREDIT
University of Illinois Department of Aerospace Engineering
Geometry of tilted plate nanoparticle injector CREDIT University of Illinois Department of Aerospace Engineering

Abstract:
In a new study, researchers at the University of Illinois and the Missouri University of Science and Technology modeled a method to manipulate nanoparticles as an alternative mode of propulsion for tiny spacecraft that require very small levels of thrust.

Study models new method to accelerate nanoparticles

Urbana, IL | Posted on August 23rd, 2019

The team simulated a system that uses light to generate an electromagnetic field. Neutral nanoparticles made from glass or some other material that insulates rather than conducts electric charges are used. The nanoparticles become polarized. All of the positive charges are displaced in the direction of the field and negative charges shift in the opposite direction. It creates an internal electric field that produces a force to move the particles from a reservoir, funneled through an injector, then shot out of an accelerator to produce thrust.

The study, that has been about eight years in the making, analytically showed that the technique can work, and suggested parameters for success.

"The challenge is in selecting the right permittivity of the medium, the right amount of charge, in which all of this happens," said Joshua Rovey, associate professor in the Department of Aerospace Engineering in The Grainger College of Engineering at the U of I. "You have to choose the right materials for the nanoparticles themselves as well as the material surrounding the nanoparticles as they move through the structure."

The technique is based on a field of physics called plasmonics that studies how optical light or optical electromagnetic waves, interact with nanoscale structures, such as a bar or prism.

Rovey explained when the light hits the nanoscale structure, a resonant interaction occurs. It creates strong electromagnetic fields right next to that structure. And those electromagnetic fields can manipulate particles by applying forces to nanoscale particles that are near those structures. The study focused on how to feed the nanoparticles into the accelerator structure, or injector and how the angles of the plates in the injector affect the forces on these nanoparticles.

"One of the main motivating factors for the concept was the absence of or lack of a power supply in space," Rovey said. "If we can just harness the sun directly, have the sun shine directly on the nanostructures themselves, there's no need for an electrical power supply or solar panel to provide power."

Rovey said this study was a numerical simulation. The next step will be to create nanoscale structures in a lab, load then into the system, apply a light source, and observe how the nanoparticles move.

####

For more information, please click here

Contacts:
Joshua Rovey

217-300-7092

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Possible Futures

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Discoveries

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Growing nano-tailored surfaces using micellar brushes November 29th, 2019

Announcements

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Military

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability November 29th, 2019

A record-setting transistor: Engineering professor designs transistor that could enable cheaper, faster wireless communications November 29th, 2019

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Energy

Graphene takes off in composites for planes and cars: The Graphene Flagship identified the strategic advantages of integrating graphene into fibre composites, used to build planes and cars December 5th, 2019

The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide: Such bacteria may, in the future, contribute to new, carbon-efficient technologies November 27th, 2019

'Messy' production of perovskite material increases solar cell efficiency November 15th, 2019

Go with the flow: Scientists design new grid batteries for renewable energy: New blueprint for affordable, sustainable 'flow batteries' developed at Berkeley Lab could accelerate an electrical grid powered by the sun and wind November 8th, 2019

Aerospace/Space

Graphene takes off in composites for planes and cars: The Graphene Flagship identified the strategic advantages of integrating graphene into fibre composites, used to build planes and cars December 5th, 2019

New electrodes could increase efficiency of electric vehicles and aircraft November 22nd, 2019

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUMí19 October 14th, 2019

The National Space Society Mourns the Passing of Alexei Leonov, The First Spacewalker October 14th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

A record-setting transistor: Engineering professor designs transistor that could enable cheaper, faster wireless communications November 29th, 2019

The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide: Such bacteria may, in the future, contribute to new, carbon-efficient technologies November 27th, 2019

Large scale integrated circuits produced in printing press: All-printed large-scale integrated circuits based on organic electrochemical transistors November 15th, 2019

Better biosensor technology created for stem cells: Rutgers innovation may help guide treatment of Alzheimer's, Parkinson's diseases November 12th, 2019

Research partnerships

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide: Such bacteria may, in the future, contribute to new, carbon-efficient technologies November 27th, 2019

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

Research shows old newspapers can be used to grow carbon nanotubes: Newspapers provide a green, economical way to produce carbon nanotubes November 22nd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project