Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Study models new method to accelerate nanoparticles

Geometry of tilted plate nanoparticle injector

CREDIT
University of Illinois Department of Aerospace Engineering
Geometry of tilted plate nanoparticle injector CREDIT University of Illinois Department of Aerospace Engineering

Abstract:
In a new study, researchers at the University of Illinois and the Missouri University of Science and Technology modeled a method to manipulate nanoparticles as an alternative mode of propulsion for tiny spacecraft that require very small levels of thrust.

Study models new method to accelerate nanoparticles

Urbana, IL | Posted on August 23rd, 2019

The team simulated a system that uses light to generate an electromagnetic field. Neutral nanoparticles made from glass or some other material that insulates rather than conducts electric charges are used. The nanoparticles become polarized. All of the positive charges are displaced in the direction of the field and negative charges shift in the opposite direction. It creates an internal electric field that produces a force to move the particles from a reservoir, funneled through an injector, then shot out of an accelerator to produce thrust.

The study, that has been about eight years in the making, analytically showed that the technique can work, and suggested parameters for success.

"The challenge is in selecting the right permittivity of the medium, the right amount of charge, in which all of this happens," said Joshua Rovey, associate professor in the Department of Aerospace Engineering in The Grainger College of Engineering at the U of I. "You have to choose the right materials for the nanoparticles themselves as well as the material surrounding the nanoparticles as they move through the structure."

The technique is based on a field of physics called plasmonics that studies how optical light or optical electromagnetic waves, interact with nanoscale structures, such as a bar or prism.

Rovey explained when the light hits the nanoscale structure, a resonant interaction occurs. It creates strong electromagnetic fields right next to that structure. And those electromagnetic fields can manipulate particles by applying forces to nanoscale particles that are near those structures. The study focused on how to feed the nanoparticles into the accelerator structure, or injector and how the angles of the plates in the injector affect the forces on these nanoparticles.

"One of the main motivating factors for the concept was the absence of or lack of a power supply in space," Rovey said. "If we can just harness the sun directly, have the sun shine directly on the nanostructures themselves, there's no need for an electrical power supply or solar panel to provide power."

Rovey said this study was a numerical simulation. The next step will be to create nanoscale structures in a lab, load then into the system, apply a light source, and observe how the nanoparticles move.

####

For more information, please click here

Contacts:
Joshua Rovey

217-300-7092

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Possible Futures

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Discoveries

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

Optical vacuum cleaner can manipulate nanoparticles: The TPU and international researchers developed a concept for constructing an optical vacuum cleaner; due to its optical properties, it can trap nanoparticles from the environment; currently, there are no sufficiently effective September 13th, 2019

Announcements

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

Military

A chameleon-inspired smart skin changes color in the sun September 11th, 2019

Hard as a diamond? Scientists predict new forms of superhard carbon: A study identifies dozens of new carbon structures that are expected to be superhard, including some that may be about as hard as diamonds September 9th, 2019

A swifter way towards 3D-printed organs: Sacrificial ink-writing technique allows 3D printing of large, vascularized human organ building blocks September 6th, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

Energy

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Inspired by natural signals in living cells, researchers design artificial gas detector: Tiny box puts itself together and glows September 13th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Rice reactor turns greenhouse gas into pure liquid fuel: Lab's 'green' invention reduces carbon dioxide into valuable fuels September 3rd, 2019

Aerospace/Space

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

In a quantum future, which starship destroys the other? Quantum physicists blur the lines of cause and effect, illustrating how a sequence of events can flip and co-exist at the same time August 23rd, 2019

Better microring sensors for optical applications May 10th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

One-atom switch supercharges fluorescent dyes: Rice University lab discovers simple technique to make biocompatible 'turn-on' dyes September 13th, 2019

Gem-like nanoparticles of precious metals shine as catalysts: Heated particles shift shape and become highly active catalytically September 12th, 2019

Hard as a diamond? Scientists predict new forms of superhard carbon: A study identifies dozens of new carbon structures that are expected to be superhard, including some that may be about as hard as diamonds September 9th, 2019

A swifter way towards 3D-printed organs: Sacrificial ink-writing technique allows 3D printing of large, vascularized human organ building blocks September 6th, 2019

Research partnerships

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

One-atom switch supercharges fluorescent dyes: Rice University lab discovers simple technique to make biocompatible 'turn-on' dyes September 13th, 2019

Hard as a diamond? Scientists predict new forms of superhard carbon: A study identifies dozens of new carbon structures that are expected to be superhard, including some that may be about as hard as diamonds September 9th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project