Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Cyborg heart could help scientists better understand the human organ

A miniature cyborg heart (shown here in a dish, being tested for electrical activity) could help researchers better understand how the human heart works.
Credit: Adapted from Nano Letters 2019, DOI: 10.1021/acs.nanolett.9b02512
A miniature cyborg heart (shown here in a dish, being tested for electrical activity) could help researchers better understand how the human heart works. Credit: Adapted from Nano Letters 2019, DOI: 10.1021/acs.nanolett.9b02512

Abstract:
In The Wizard of Oz, the Tin Man famously sang, “If I only had a heart . . . “ Although the Tin Man had to be satisfied with a heart-shaped clock, researchers reporting in ACS’ Nano Letters have now created a miniature cyborg heart that produces electrical signals like the human version. But instead of implanting the organoid into a robot, the researchers plan to use it to study heart development, diseases and therapeutics.

Cyborg heart could help scientists better understand the human organ

Washington, DC | Posted on August 21st, 2019

To better understand complex organs like the heart and brain, scientists would like to implant sensors that could continuously monitor cellular activities throughout the entire 3D structure of an organ over a long period of time. However, implanting or injecting such devices directly into a living organ could destroy intricate cellular networks, and the sensors wouldn’t penetrate into all regions. Therefore, Jia Liu at the School of Engineering and Applied Sciences at Harvard and his colleagues wanted to incorporate nanoelectronics into human tissue to produce a miniature cyborg heart, outside of the human body.

The researchers made the cyborg heart by placing a soft, stretchable mesh of nanoelectronics over a sheet of stem cells growing in a dish. The cells grew around and through the mesh, covering it completely. By adding certain substances, the team triggered the stem cells to fold into a 3D shape, about the size of a pencil eraser, and transform into cardiac tissue that beat just like a real heart. The researchers used the embedded nanoelectronics to take electrophysiological recordings during the formation of the organoid, which could shed light on how the human heart develops. Further work on cyborg organoids could provide a “paradigm-shifting platform” to study organs of all types in health and disease, as well as to develop and test new therapeutics, the researchers say.

The authors acknowledge funding from the Harvard Dean’s Competitive Fund for Promising Scholarship and the facility at the Harvard University Center for Nanoscale Systems supported by the National Science Foundation.

####

About American Chemical Society
The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Jia Liu, Ph.D.
School of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138
Phone: 617-599-7582

ACS Newsroom


Katie Cottingham

301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Cyborg Organoids: Implantation of Nanoelectronics via Organogenesis for Tissue-Wide Electrophysiology”:

Related News Press

News and information

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Possible Futures

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

Nanomedicine

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

Inspired by natural signals in living cells, researchers design artificial gas detector: Tiny box puts itself together and glows September 13th, 2019

New health monitors are flexible, transparent and graphene enabled September 13th, 2019

Discoveries

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

Scientists create a nanomaterial that is both twisted and untwisted at the same time: The material developed at University of Bath allows for incredibly sensitive detection of the direction molecules twist September 13th, 2019

Announcements

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

Journal Nanotechnology Progress International (JONPI), volume 7, issue 1 out September 16th, 2019

Nanobiotechnology

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

Scientists create a nanomaterial that is both twisted and untwisted at the same time: The material developed at University of Bath allows for incredibly sensitive detection of the direction molecules twist September 13th, 2019

Inspired by natural signals in living cells, researchers design artificial gas detector: Tiny box puts itself together and glows September 13th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project