Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Oddball edge wins nanotube faceoff: Rice U. theory shows peculiar 'Janus' interface a common mechanism in carbon nanotube growth

Rice University researchers have determined that an odd, two-faced "Janus" edge is more common than previously thought for carbon nanotubes growing on a rigid catalyst. The conventional nanotube at left has facets that form a circle, allowing the nanotube to grow straight up from the catalyst. But they discovered the nanotube at right, with a tilted Janus edge that has segregated sections of zigzag and armchair configurations, is far more energetically favored when growing carbon nanotubes via chemical vapor deposition. (Credit: Illustration by Evgeni Penev/Rice University)
Rice University researchers have determined that an odd, two-faced "Janus" edge is more common than previously thought for carbon nanotubes growing on a rigid catalyst. The conventional nanotube at left has facets that form a circle, allowing the nanotube to grow straight up from the catalyst. But they discovered the nanotube at right, with a tilted Janus edge that has segregated sections of zigzag and armchair configurations, is far more energetically favored when growing carbon nanotubes via chemical vapor deposition. (Credit: Illustration by Evgeni Penev/Rice University)

Abstract:
When is a circle less stable than a jagged loop? Apparently when you're talking about carbon nanotubes.

Oddball edge wins nanotube faceoff: Rice U. theory shows peculiar 'Janus' interface a common mechanism in carbon nanotube growth

Houston, TX | Posted on July 29th, 2019

Rice University theoretical researchers have discovered that nanotubes with segregated sections of "zigzag" and "armchair" facets growing from a solid catalyst are far more energetically stable than a circular arrangement would be.

Under the right circumstances, they reported, the interface between a growing nanotube and its catalyst can reach its lowest-known energy state via the two-faced "Janus" configuration, with a half-circle of zigzags opposite six armchairs.

The terms refer to the shape of the nanotube's edge: A zigzag nanotube's end looks like a saw tooth, while an armchair is like a row of seats with armrests. They are the basic edge configurations of the two-dimensional honeycomb of carbon atoms known as graphene (as well as other 2D materials) and determine many of the materials' properties, especially electrical conductivity.

The Brown School of Engineering team of materials theorist Boris Yakobson, researcher and lead author Ksenia Bets and assistant research professor Evgeni Penev reported their results in the American Chemical Society journal ACS Nano.

The theory is a continuation of the team's discovery last year that Janus interfaces are likely to form on a catalyst of tungsten and cobalt, leading to a single chirality, called (12,6), that other labs had reported growing in 2014.

The Rice team now shows such structures aren't unique to a specific catalyst, but are a general characteristic of a number of rigid catalysts. That's because the atoms attaching themselves to the nanotube edge always seek their lowest energy states, and happen to find it in the Janus configuration they named A|Z.

"People have assumed in studies that the geometry of the edge is a circle," Penev said. "That's intuitive -- it's normal to assume that the shortest edge is the best. But we found for chiral tubes the slightly elongated Janus edge allows it to be in much better contact with solid catalysts. The energy for this edge can be quite low."

In the circle configuration, the flat armchair bottoms rest on the substrate, providing the maximum number of contacts between the catalyst and the nanotube, which grows straight up. (Janus edges force them to grow at an angle.)

Carbon nanotubes -- long, rolled-up tubes of graphene -- are difficult enough to see with an electron microscope. As yet there's no way to observe the base of a nanotube as it grows from the bottom up in a chemical vapor deposition furnace. But theoretical calculations of the atom-level energy that passes between the catalyst and the nanotube at the interface can tell researchers a lot about how they grow.

That's a path the Rice lab has pursued for more than a decade, pulling at the thread that reveals how minute adjustments in nanotube growth can change the kinetics, and ultimately how nanotubes can be used in applications.

"Generally, the insertion of new atoms at the nanotube edge requires breaking the interface between the nanotube and the substrate," Bets said. "If the interface is tight, it would cost too much energy. That is why the screw dislocation growth theory proposed by Professor Yakobson in 2009 was able to connect the growth rate with the presence of kinks, the sites on the nanotube edge that disrupt the tight carbon nanotube-substrate contact.

"Curiously, even though Janus edge configuration allows very tight contact with the substrate it still preserves a single kink that would allow continuous nanotube growth, as we demonstrated last year for the cobalt tungsten catalyst," Bets said.

Bets ran extensive computer simulations to model nanotubes growing on three rigid catalysts that showed evidence of Janus growth and one more “fluid” catalyst, tungsten carbide, that did not. "The surface of that catalyst is very mobile, so the atoms can move a lot," Penev said. "For that one, we did not observe a clear segregation."

Yakobson compared Janus nanotubes to the Wulff shape of crystals. "It's somewhat surprising that our analysis suggests a restructured, faceted edge is energetically favored for chiral tubes," he said. "Assuming that the lowest energy edge must be a minimal-length circle is like assuming that a crystal shape must be a minimal-surface sphere but we know well that 3D shapes have facets and 2D shapes are polygons, as epitomized by the Wulff construction.

"Graphene has by necessity several 'sides,' but a nanotube cylinder has one rim, making the energy analysis different," he said. "This raises fundamentally interesting and practically important questions about the relevant structure of the nanotube edges."

The Rice researchers hope their discovery will advance them along the path toward those answers. "The immediate implication of this finding is a paradigm shift in our understanding of growth mechanisms," Yakobson said. "That may become important in how one practically designs the catalyst for efficient growth, especially of controlled nanotube symmetry type, for electronic and optical utility."

Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and of Chemistry. The National Science Foundation (NSF) and the Air Force Office of Scientific Research supported the research.

Computing resources were provided by the Department of Defense Supercomputing Resource Center; the National Energy Research Scientific Computing Center, supported by the Department of Energy Office of Science; the NSF-supported XSEDE supercomputer; and the NSF-supported DAVinCI cluster at Rice, administered by the Center for Research Computing and procured in partnership with Rice’s Ken Kennedy Institute for Information Technology.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Two-faced edge makes nanotubes obey:

Caps not the culprit in nanotube chirality:

Yakobson Research Group:

George R. Brown School of Engineering:

Department of Materials Science and NanoEngineering:

Related News Press

News and information

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Chemistry

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

Physics: An ultrafast glimpse of the photochemistry of the atmosphere October 11th, 2019

Water + air + electricity = hydrogen peroxide: Rice University breakthrough produces valuable chemical on demand at point of use October 10th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

2 Dimensional Materials

Borophene on silver grows freely into an atomic ‘skin’: Rice scientists lead effort to improve manufacture of valuable 2D material October 1st, 2019

Graphene/ Graphite

Borophene on silver grows freely into an atomic ‘skin’: Rice scientists lead effort to improve manufacture of valuable 2D material October 1st, 2019

Physicists found weak spots in ceramic/graphene composites: Physicists found out the structures in nanomaterials made of ceramic and graphene plates, in which cracks appear most frequently September 27th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Possible Futures

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Chip Technology

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Combination of Nanometrics and Rudolph Technologies to Create Onto Innovation October 16th, 2019

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

PROPHESEE Joins IRT Nanoelec 3D Integration Program Will Work with CEA-Leti, STMicroelectronics, Mentor, EVG, and SET to Develop New 3D Event-Based Vision System October 14th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Optical computing/Photonic computing

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

Save time using maths: Analytical tool designs corkscrew-shaped nano-antennae August 23rd, 2019

Discoveries

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Materials/Metamaterials

Physicists found weak spots in ceramic/graphene composites: Physicists found out the structures in nanomaterials made of ceramic and graphene plates, in which cracks appear most frequently September 27th, 2019

Turning heat into electricity: A new thermoelectric material developed at FEFU: Young scientists from FEFU manufactured new thermoelectric material based on strontium titanate and titanium oxide September 27th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Announcements

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Military

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

CCNY physicists score double hit in LED research September 27th, 2019

A chameleon-inspired smart skin changes color in the sun September 11th, 2019

Hard as a diamond? Scientists predict new forms of superhard carbon: A study identifies dozens of new carbon structures that are expected to be superhard, including some that may be about as hard as diamonds September 9th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Water + air + electricity = hydrogen peroxide: Rice University breakthrough produces valuable chemical on demand at point of use October 10th, 2019

Novel nanogels hold promise for improved drug delivery to cancer patients: 'Precision Medicine' approach underpins UT Austin engineers' development of multifunctional nanogel September 27th, 2019

Photonics/Optics/Lasers

Researchers synthesize 'impossible' superconductor October 3rd, 2019

Trapping and moving tiny particles using light September 24th, 2019

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project