Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Limitation exposed in promising quantum computing material: Metallic surfaces no longer protected as topological insulators become thinner

Vikram Deshpande, assistant professor in the Department of Physics & Astronomy (left) and doctoral candidate Su Kong Chong (right) stand in the "coolest lab on campus." Deshpande leads a lab that can cool topological materials down to just a few fractions of a degree above absolute zero at -273.15°C (-459.67°F). It is literally the coldest laboratory on campus.

CREDIT
Lisa Potter/University of Utah
Vikram Deshpande, assistant professor in the Department of Physics & Astronomy (left) and doctoral candidate Su Kong Chong (right) stand in the "coolest lab on campus." Deshpande leads a lab that can cool topological materials down to just a few fractions of a degree above absolute zero at -273.15°C (-459.67°F). It is literally the coldest laboratory on campus. CREDIT Lisa Potter/University of Utah

Abstract:
Quantum computers promise to perform operations of great importance believed to be impossible for our technology today. Current computers process information via transistors carrying one of two units of information, either a 1 or a 0. Quantum computing is based on the quantum mechanical behavior of the logic unit. Each quantum unit, or "qubit," can exist in a quantum superposition rather than taking discrete values. The biggest hurdles to quantum computing are the qubits themselves--it is an ongoing scientific challenge to create logic units robust enough to carry instructions without being impacted by the surrounding environment and resulting errors.

Limitation exposed in promising quantum computing material: Metallic surfaces no longer protected as topological insulators become thinner

Salt Lake City, UT | Posted on July 19th, 2019

Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a good candidate from which to create qubits that will be resilient from these errors and protected from losing their quantum information. This material has both an insulating interior and metallic top and bottom surfaces that conduct electricity. The most important property of 3-D topological insulators is that the conductive surfaces are predicted to be protected from the influence of the surroundings. Few studies exist that have experimentally tested how TIs behave in real life.

A new study from the University of Utah found that in fact, when the insulating layers are as thin as 16 quintuple atomic layers across, the top and bottom metallic surfaces begin to influence each other and destroy their metallic properties. The experiment demonstrates that the opposite surfaces begin influencing each other at a much thicker insulating interior than previous studies had shown, possibly approaching a rare theoretical phenomenon in which the metallic surfaces also become insulating as the interior thins out.

"Topological insulators could be an important material in future quantum computing. Our findings have uncovered a new limitation in this system," said Vikram Deshpande, assistant professor of physics at the University of Utah and corresponding author of the study. "People working with topological insulators need to know what their limits are. It turns out that as you approach that limit, when these surfaces start "talking" to each other, new physics shows up, which is also pretty cool by itself."

The new study published on July 16, 2019 in the journal Physics Review Letters.

Sloppy sandwiches built from topological insulators

Imagine a hardcover textbook as a 3-D topological insulator, Deshpande said. The bulk of the book are the pages, which is an insulator layer--it can't conduct electricity. The hardcovers themselves represent the metallic surfaces. Ten years ago, physicists discovered that these surfaces could conduct electricity, and a new topological field was born.

Deshpande and his team created devices using 3-D TIs by stacking five few-atom-thin layers of various materials into sloppy sandwich-like structures. The bulk core of the sandwich is the topological insulator, made from a few quintuple layers of bismuth antimony tellurium selenide (Bi2-xSbxTe3-ySey). This core is sandwiched by a few layers of boron nitride, and is topped off with two layers of graphite, above and below. The graphite works like metallic gates, essentially creating two transistors that control conductivity. Last year Deshpande led a study that showed that this topological recipe built a device that behaved like you would expect - bulk insulators that protect the metallic surfaces from the surrounding environment.

In this study, they manipulated the 3-D TI devices to see how the properties changed. First, they built van der Waal heterostructures--those sloppy sandwiches--and exposed them to a magnetic field. Deshpande's team tested many at his lab at the University of Utah and first author Su Kong Chong, doctoral candidate at the U, traveled to the National High Magnetic Field Lab in Tallahassee to perform the same experiments there using one of the highest magnetic fields in the country. In the presence of the magnetic field, a checkerboard pattern emerged from the metallic surfaces, showing the pathways by which electrical current will move on the surface. The checkerboards, consisting of quantized conductivities versus voltages on the two gates, are well-defined, with the grid intersecting at neat intersection points, allowing the researchers to track any distortion on the surface.

They began with the insulator layer at 100 nanometers thick, about a thousandth of the diameter of a human hair, and progressively got thinner down to 10 nanometers. The pattern started distorting until the insulator layer was at 16 nanometers thick, when the intersection points began to break up, creating a gap that indicated that the surfaces were no longer conductive.

"Essentially, we've made something that was metallic into something insulating in that parameter space. The point of this experiment is that we can controllably change the interaction between these surfaces," said Deshpande. "We start out with them being completely independent and metallic, and then start getting them closer and closer until they start 'talking,' and when they're really close, they are essentially gapped out and become insulating."

Previous experiments in 2010 and 2012 had also observed the energy gap on the metallic surfaces as the insulating material thins out. But those studies concluded that the energy gap appeared with much thinner insulating layers--five nanometers in size. This study observed the metallic surface properties break down at much larger interior thickness, up to 16 nanometers. The other experiments used different "surface science" methods where they observed the materials through a microscope with a very sharp metallic tip to look at every atom individually or studied them with highly energetic light.

"These were extremely involved experiments which are pretty far removed from the device-creation that we are doing," said Deshpande.

Next, Deshpande and the team will look more closely into the physics creating that energy gap on the surfaces. He predicts that these gaps can be positive or negative depending on material thickness.

###

Other authors who contributed to the study are Kyu Bum Han and Taylor Sparks from the U's Department of Materials Science and Engineering.

####

For more information, please click here

Contacts:
Lisa Potter

801-585-3093

Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Imaging

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

News and information

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Possible Futures

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Chip Technology

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Combination of Nanometrics and Rudolph Technologies to Create Onto Innovation October 16th, 2019

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

PROPHESEE Joins IRT Nanoelec 3D Integration Program Will Work with CEA-Leti, STMicroelectronics, Mentor, EVG, and SET to Develop New 3D Event-Based Vision System October 14th, 2019

Quantum Computing

Machine learning at the quantum lab September 27th, 2019

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

Discoveries

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Announcements

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Tools

Pinpointing biomolecules with nanometer accuracy October 21st, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Combination of Nanometrics and Rudolph Technologies to Create Onto Innovation October 16th, 2019

Physics: DNA-PAINT super-resolution microscopy at speed: Optimized DNA sequences allow for 10-times faster image acquisition in DNA-PAINT October 11th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Water + air + electricity = hydrogen peroxide: Rice University breakthrough produces valuable chemical on demand at point of use October 10th, 2019

Novel nanogels hold promise for improved drug delivery to cancer patients: 'Precision Medicine' approach underpins UT Austin engineers' development of multifunctional nanogel September 27th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project