Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > The best of both worlds: how to solve real problems on modern quantum computers

Photo shows Dr. Alexeev with a model of an IBM Q quantum computer.

CREDIT
Argonne National Laboratory
Photo shows Dr. Alexeev with a model of an IBM Q quantum computer. CREDIT Argonne National Laboratory

Abstract:
In recent years, quantum devices have become available that enable researchers -- for the first time -- to use real quantum hardware to begin to solve scientific problems. However, in the near term, the number and quality of qubits (the basic unit of quantum information) for quantum computers are expected to remain limited, making it difficult to use these machines for practical applications.

The best of both worlds: how to solve real problems on modern quantum computers

Argonne, IL | Posted on July 12th, 2019

A hybrid quantum and classical approach may be the answer to tackling this problem with existing quantum hardware. Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory and Los Alamos National Laboratory, along with researchers at Clemson University and Fujitsu Laboratories of America, have developed hybrid algorithms to run on quantum machines and have demonstrated them for practical applications using IBM quantum computers (see below for description of Argonne's role in the IBM Q Hub at Oak Ridge National Laboratory [ORNL]) and a D-Wave quantum computer.

"This approach will enable researchers to use near-term quantum computers to solve applications that support the DOE mission. For example, it can be applied to find community structures in metabolic networks or a microbiome." -- Yuri Alexeev, principal project specialist, Computational Science division

The team's work is presented in an article entitled "A Hybrid Approach for Solving Optimization Problems on Small Quantum Computers" that appears in the June 2019 issue of the Institute of Electrical and Electronics Engineers (IEEE) Computer Magazine.

Concerns about qubit connectivity, high noise levels, the effort required to correct errors, and the scalability of quantum hardware have limited researchers' ability to deliver the solutions that future quantum computing promises.

The hybrid algorithms that the team developed employ the best features and capabilities of both classical and quantum computers to address these limitations. For example, classical computers have large memories capable of storing huge datasets -- a challenge for quantum devices that have only a small number of qubits. On the other hand, quantum algorithms perform better for certain problems than classical algorithms.

To distinguish between the types of computation performed on two completely different types of hardware, the team referred to the classical and quantum stages of hybrid algorithms as central processing units (CPUs) for classical computers and quantum processing units (QPUs) for quantum computers.

The team seized on graph partitioning and clustering as examples of practical and important optimization problems that can already be solved using quantum computers: a small graph problem can be solved directly on a QPU, while larger graph problems require hybrid quantum-classical approaches.

As a problem became too large to run directly on quantum computers, the researchers used decomposition methods to break the problem down into smaller pieces that the QPU could manage -- an idea they borrowed from high-performance computing and classical numerical methods.

All the pieces were then assembled into a final solution on the CPU, which not only found better parameters, but also identified the best sub-problem size to solve on a quantum computer.

Such hybrid approaches are not a silver bullet; they do not allow for quantum speedup because using decomposition schemes limits speed as the size of the problem increases. In the next 10 years, though, expected improvements in qubits (quality, count, and connectivity), error correction, and quantum algorithms will decrease runtime and enable more advanced computation.

"In the meantime," according to Yuri Alexeev, principal project specialist in the Computational Science division, "this approach will enable researchers to use near-term quantum computers to solve applications that support the DOE mission. For example, it can be applied to find community structures in metabolic networks or a microbiome."

###

Additional paper authors include Ruslan Shaydulin and Ilya Safro of Clemson University, Hayato Ushijima-Mwesigwa of Fujitsu Laboratories of America, and Christian F.A. Negre and Susan M. Mniszewski of Los Alamos National Laboratory.

This research leveraged the computing resources of the Argonne Leadership Computing Facility, a DOE Office of Science User Facility; IBM quantum computers at the Oak Ridge National Laboratory IBM Q hub; and a D-Wave 2000Q quantum computer provided by the DOE National Nuclear Security Administration's Advanced Simulation and Computing Program at Los Alamos National Laboratory.

About the IBM Q Hub at Oak Ridge National Laboratory...
The IBM Q Network is the world's first community of Fortune 500 companies, startups, academic institutions and research labs working with IBM to advance quantum computing and explore practical applications for business and science. As one of the member organizations of the IBM Q Hub at ORNL, Argonne is developing quantum algorithms to help tackle challenges in chemistry and physics. The new algorithms will also be used to model and simulate quantum network architectures and develop hybrid quantum-classical architectures, which combine the power of quantum processors with Argonne's world-class supercomputing resources. Membership in the IBM Q Hub is enabling Argonne researchers to leverage their expertise in scalable algorithms across a broad set of multidisciplinary scientific applications and explore the impact of quantum computing on key areas including quantum chemistry and quantum materials.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science .

For more information, please click here

Contacts:
Benjamin Schiltz

630-252-5640

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Laboratories

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Quantum Computing

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

RIT awarded NSF funding to conceptualize Quantum Photonic Institute: RIT will develop plan for open-access Quantum Foundry for quantum photonic circuits August 7th, 2019

Virginia Tech researchers lead breakthrough in quantum computing July 26th, 2019

Discoveries

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Announcements

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Research partnerships

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project