Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Spontaneous synchronisation achieved at the nanoscale

Abstract:
Researchers from the ICN2 Phononic and Photonic Nanostructures Group have led a research which synchronised for the first time a couple of optomechanical oscillators. This work sets a solid basis for producing reconfigurable networks of such oscillators, with potential applications in neuromorphic computing, a field of research that intends to imitate neurological structures to improve computation.

Spontaneous synchronisation achieved at the nanoscale

Barcelona, Spain | Posted on July 4th, 2019

At the end of a live show, the audience requests an “Encore” under a rhythmic beat. What made rhythm emerge from the initially disperse claps? Why do flocks of birds or schools of fishes all move in unison without knowing each other’s intention? These seemingly unrelated phenomena, and many more, from the subatomic level to cosmic scales, are all the result of a phenomenon called synchronisation.

Despite being so pervasive in nature, this phenomenon was first documented in 1665, when Lord Huygens discovered that his two pendulum clocks, hung from the same structure, ended up swinging towards and away from each other regardless of their initial state, i.e., the clocks synchronised in anti-phase. The common structure from which the pendulums hang is an essential part of the system, since it transmits from one pendulum to the other the perturbations that each of them generates, causing the final synchronisation.

While it is rather straightforward to find examples at macroscopic scales, it is challenging to obtain similar results at the nanoscale. Spontaneous synchronisation between two systems requires different conditions. For instance, both of the systems must be self-sustained oscillators, meaning that they are able to generate their own rhythms, without the need of an external source. Moreover, they must synchronise due to a weak interaction, not because the systems are strongly connected.

These requirements have been fulfilled for the first time for two so-called optomechanical oscillators in a work with PhD students Martín Colombano and Guillermo Arregui, from the ICN2 Phononic and Photonic Nanostructures Group, as first authors. The research was led by ICREA Prof. Dr Clivia M. Sotomayor-Torres, Group Leader of the aforementioned ICN2 Group, and Dr Daniel Navarro-Urriós, from MIND-IN2UB and Visiting Postdoctoral Researcher at the ICN2. They are the last authors of the article published in Physical Review Letters in collaboration with Universidad de La Laguna, NEST-CNR, and Universitat Politècnica de València, within the framework of the European Commission H2020 FET Open project PHENOMEN (H2020-EU-713450).

The researchers aimed to emulate Huygens’ experiment at a scale 10 000 times smaller. To achieve this, they used two optomechanical (OM) oscillators fabricated in silicon linked by a narrow beam. Unlike Huygens’ pendulums which were driven by the mechanical motion of the clock, the OM oscillators are driven to self-sustained oscillations by means of forces exerted on them by infrared lasers. Each oscillator receives light from a different laser, reaching its own vibration frequency. However, one oscillator (the Master) is set to have stronger oscillations, i.e., with a bigger amplitude than the other (the Slave). The experiment shows that thanks to the beam linking the two oscillators, the frequency of the Slave becomes that of the Master, achieving synchronisation. The researchers were also able to control the collective dynamics, i.e., the synchronised state, by actuating over a single oscillator with another laser. If one oscillator is illuminated directly, the system goes
out of the synchronised state. Removing the laser, the system spontaneously returns to synchronisation.

As the first result of its kind, this work sets a solid basis for realizing reconfigurable networks of optomechanical oscillators, in which different parts of the network could be set to perform different functions. Also, the more oscillators there are, the less noise the system generates, allowing to define better frequencies. These results may have applications in neuromorphic photonic computing, a field of research that intends to imitate neurological structures to improve computation.

####

For more information, please click here

Contacts:
Francisco J. Paños

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article reference:

Related News Press

Physics

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

News and information

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Possible Futures

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Discoveries

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

A stitch in time: How a quantum physicist invented new code from old tricks: Error suppression opens pathway to universal quantum computing May 22nd, 2020

Announcements

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Research partnerships

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Observation of intervalley transitions can boost valleytronic science and technology: UC Riverside-led research shows these transitions can emit light May 15th, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project