Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New record: 3D-printed optical-electronic integration

Schematic illustration of an integrated electrically controlled microlaser module for optoelectronic hybrid integration. Briefly, this module is designed to be a thermo-responsive polymer resonator on top of a chip-scale metal heating circuit. The voltage is applied in-plane with the current transport to provide local-area thermal field, which induces the lasing wavelength change of the upper dye-doped microresonators.

CREDIT
©Science China Press
Schematic illustration of an integrated electrically controlled microlaser module for optoelectronic hybrid integration. Briefly, this module is designed to be a thermo-responsive polymer resonator on top of a chip-scale metal heating circuit. The voltage is applied in-plane with the current transport to provide local-area thermal field, which induces the lasing wavelength change of the upper dye-doped microresonators. CREDIT ©Science China Press

Abstract:
Optoelectronic integration offers a promising strategy to simultaneously obtain the merits of electrons and photons when they serve as information carriers, including high-density communication and high-speed information processing, paving the way for the next-generation integrated circuits (ICs). The ever-increasing demand on bandwidth and information density in ICs call for the micro/nano functional devices capable of being fabricated in three-dimensional (3D) ICs, which is desirable for their improved performance in data processing under lower consumption. In such highly integrated circuits, however, selective electrical modulation of specific micro/nanoscale optical devices, including light sources and waveguides, is a key requirement for yielding more functional and more compact integrated elements, but hindered by the normal used nonlinearity found in electro-optic materials.

New record: 3D-printed optical-electronic integration

Beijing, China | Posted on June 18th, 2019


Femtosecond laser direct writing (FsLDW), as one of the 3D printing techniques, enables the direct and addressable construction of 3D-integrated optoelectronic devices utilizing organic compounds with two-photon polymerized features. With doping flexibility, the polymerized microstructures can be readily incorporated with organic dye molecules to produce functional devices, like coherent laser sources. Besides, organic polymers possess excellent responsiveness to external stimuli, including temperature. Their large thermo-optic coefficient enables the realization of the electrical tuning of resonant wavelength with high efficiency when they are fabricated into microcavity structures. The incorporation of thermo-responsive polymeric microlaser with underneath electrical microheater in the 3D fabrication manner can be used as an effective hybrid microlaser module with selective electric modulation towards optical-electronic integration.

Very recently, Professor Yong Sheng Zhao's group in the Institute of Chemistry, Chinese Academy of Sciences demonstrated an in situ electrically modulated microlaser module based on 3D-printed dye-doped polymeric microdisks, which is published in Science China Chemistry.

The thermo-optic effect of the polymer matrix enabled the tuning of lasing modes from the microdisk upon heating. The shape designability of FsLDW allows the fabrication of higher-level microstructures to manipulate light signals, including the waveguide coupled microdisks for light remote control and the coupled double-microdisk resonators for laser mode selection. The latter microstructure was further integrated with an underneath electrical microheater.

As a result, the cavity resonant wavelength can be shifted on the basis of resistance heating controlled optical length change through the thermo-optic effect of polymeric matrix material, which enabled an electrical modulation of the output wavelength of the 3D-printed microlaser module.

###

This work was supported financially by the Ministry of Science and Technology of China (Grant No. 2017YFA0204502), and the National Natural Science Foundation of China (Grant Nos. 21533013 and 21790364).

####

For more information, please click here

Contacts:
Zhao Yong Sheng

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Liu Y, Lin X, Wei C, Zhang C, Yao J, Zhao YS. 3D-printed optical-electronic integrated devices. Sci. China Chem., 2019, DOI: 10.1007/s11426-019-9503-0:

Related News Press

News and information

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

3D & 4D printing/Additive-manufacturing

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

A swifter way towards 3D-printed organs: Sacrificial ink-writing technique allows 3D printing of large, vascularized human organ building blocks September 6th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

Govt.-Legislation/Regulation/Funding/Policy

MTU engineers examine lithium battery defects January 28th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Possible Futures

MTU engineers examine lithium battery defects January 28th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Chip Technology

Toward safer disposal of printed circuit boards January 16th, 2020

Generation and Manipulation of spin currents for advanced electronic devices January 9th, 2020

NUS scientists create world’s first monolayer amorphous film January 9th, 2020

Onto Innovation to Present at the 22nd Annual Needham Growth Conference January 3rd, 2020

Optical computing/Photonic computing

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability November 29th, 2019

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

Discoveries

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

Quantum physics: On the way to quantum networks January 24th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Old Molecule, New Tricks: Chemistry professors develop an electrochemical method for extracting uranium, and potentially other metal ions, from solution January 24th, 2020

Announcements

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

American Chemical Society names Philip Proteau as new editor-in-chief of the Journal of Natural Products January 24th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

A consensus statement establishes the protocols to study stability of perovskite photovoltaic devices January 24th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

MTU engineers examine lithium battery defects January 28th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Gasification goes green: Rice's low-temp photocatalyst could slash the carbon footprint for syngas January 10th, 2020

Photonics/Optics/Lasers

Let the europium shine brighter January 21st, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

CEA-Leti Will Present 21 Papers (Five Invited) at Photonics West 2020 & Host a Workshop January 9th, 2020

International Conference and Exhibition on Nanotechnology - Nano Seoul 2020 January 3rd, 2020

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Large scale integrated circuits produced in printing press: All-printed large-scale integrated circuits based on organic electrochemical transistors November 15th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Physicists make graphene discovery that could help develop superconductors: Rutgers-led research could reduce energy use, improve electronic devices August 1st, 2019

No ink needed for these graphene artworks: Artist employs Rice University lab's laser-induced graphene as medium for ultramodern art May 3rd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project