Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New interaction between thin film magnets discovered: Physicists of Johannes Gutenberg University Mainz lay the foundations for new three-dimensional spin structures

Abstract:
We ubiquitously stream videos, we download audiobooks to mobile devices, and we store huge numbers of photos on our devices. In short, the storage capacity we need is growing rapidly. Researchers are working to develop new data storage options. One possibility is the racetrack memory device where the data is stored in nanowires in the form of oppositely magnetized areas, so-called domains. The results of this research have recently been published in the scientific journal Nature Materials.

New interaction between thin film magnets discovered: Physicists of Johannes Gutenberg University Mainz lay the foundations for new three-dimensional spin structures

Mainz, Germany | Posted on June 7th, 2019

A research team from Johannes Gutenberg University Mainz (JGU) in Germany, together with colleagues from Eindhoven University of Technology in the Netherlands as well as Daegu Gyeongbuk Institute of Science and Technology and Sogang University in South Korea, has now made a discovery that could significantly improve these racetrack memory devices. Instead of using individual domains, in the future one could store the information in three-dimensional spin structures, making the memories faster and more robust and providing a larger data capacity.

"We were able to demonstrate a hitherto undiscovered interaction," explained Dr. Kyujoon Lee of Mainz University. "It occurs between two thin magnetic layers separated by a non-magnetic layer." Usually, spins align either parallel or antiparallel to each other. This would also be expected for such two separate magnetic layers. However, the situation is different in this work as the researchers have been able to show that in particular systems the spins in the two layers are twisted against each other. More precisely, they couple to be aligned perpendicular with one another at an angle of 90 degrees. This new interlayer coupling interaction was theoretically explained through theoretical calculations performed by the project partners at the Peter Grünberg Institute (PGI) and the Institute for Advanced Simulation (IAS) at Forschungszentrum Jülich.

The Mainz-based researchers examined a number of different combinations of materials grown in multi-layers. They were able to show that this previously unknown interaction exists in different systems and can be engineered by the design of the layers. Theoretical calculations allowed them to understand the underlying mechanisms of this novel effect.

With their results, the researchers reveal a missing component in the interaction between such layers. "These results are very interesting to the scientific community in that they show that the missing antisymmetric element of interlayer interaction exists," commented Dr. Dong-Soo Han from JGU. This opens up the possibility of designing various new three-dimensional spin structures, which could lead to new magnetic storage units in the long term.

Professor Mathias Kläui, senior author of the publication, added: "I am very happy that this collaborative work in an international team has opened a new path to three-dimensional structures that could become a key enabler for new 3D devices. Through the financial support of the German Research Foundation and the German Academic Exchange Service, the DAAD, we were able to exchange students, staff, and professors with our foreign partners in order to realize this exciting work."

####

For more information, please click here

Contacts:
Dr. Kyujoon Lee

49-613-139-27621

Copyright © Johannes Gutenberg University Mainz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Magnetism

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

IKBFU and University of Oviedo Physicists tested new research model on magnetic materials: Soft magnetic ferromagnetic microwires are used for magnetic field sensors, as well as for encoding and reading information April 24th, 2020

Thin films

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

Possible Futures

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Memory Technology

Process for 'two-faced' nanomaterials may aid energy, information tech June 26th, 2020

EU Team Demonstrates Full Data-Transfer Silicon Photonics Module Delivering 100 Gb/s and Develops Building Blocks for Tb/s: COSMICC Project Breakthroughs ‘Will Answer Tremendous Market Needs with a Target Cost per Bit that Traditional Wavelength-Division Multiplexing Transceivers June 23rd, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Engineers put tens of thousands of artificial brain synapses on a single chip: The design could advance the development of small, portable AI devices June 8th, 2020

Discoveries

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Announcements

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project