Home > Press > Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies
![]() |
An innovative method for controlling single-photon emission for specific locations in 2D materials may offer a new path toward all-optical quantum computers and other quantum technologies. This image shows a false-color scanning electron micrograph of the array used to create place single-photon sources in epitaxial tungsten diselenide. Inset shows the Hanbury-Brown Twiss interferometry measurement proving quantum emission. CREDIT Image by Michael Pettes Los Alamos National Laboratory image |
Abstract:
Efforts to create reliable light-based quantum computing, quantum key distribution for cybersecurity, and other technologies got a boost from a new study demonstrating an innovative method for creating thin films to control the emission of single photons.
"Efficiently controlling certain thin-film materials so they emit single photons at precise locations--what's known as deterministic quantum emission--paves the way for beyond-lab-scale quantum materials," said Michael Pettes, a Los Alamos National Laboratory materials scientist and leader of the multi-institution research team.
The scalability of these two-dimensional, tungsten/selenium thin films makes them potentially useful in processes to manufacture quantum technologies. Single-photon generation is a requirement for all-optical quantum computing and key distribution in quantum communications, and it is crucial for advancing quantum information technologies.
The project, documented as a Featured Article in the journal Applied Physics Letters this week, exploits strain at highly spatially localized and well-separated emission sites, or tips, in a tungsten/selenium film. The team synthesized the film through chemical vapor deposition using a multi-step, diffusion-mediated gas source.
Because the material is very thin, it conforms to the radius of the tips and the material bends towards the substrate by more than a few percent, like someone lying on a bed of nails. The resulting strain is enough to change the electronic structure, but only at the tips. The affected area emits light of a different color and nature than light from the rest of the film.
"While more research is needed to fully understand the role of mechanical deformation in creating these quantum emission sites, we may enable a route to control quantum optical properties by using strain," Pettes said. "These single-photon sources form the basis for photonics-based, all-optical quantum computing schemes."
Engineering of quantum emission in 2D materials is still in a very early stage, the authors note. While studies have observed single photons originating from defect structures in these materials, previous work has suggested that non-uniform strain fields might govern the effect. However, the mechanism responsible for this emergent phenomenon remains unclear and is the focus of ongoing work at Los Alamos.
Funding: The work at Los Alamos National Laboratory was funded by the Laboratory Directed Research and Development Program (LDRD 20190516ECR) and the Center for Integrated Nanotechonogies (CINT), a DOE nanoscience research center jointly operated by Los Alamos and Sandia national laboratories. Upgrades to the tandem accelerator were funded by the Principal Associate Directorate for Science, Technology, and Engineering capital investment fund and the CINT capability development fund.
####
About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy's National Nuclear Security Administration.
Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.
For more information, please click here
Contacts:
Nancy Ambrosiano
505-667-0471
Copyright © Los Alamos National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021
Laboratories
Controlling chemical catalysts with sculpted light January 15th, 2021
New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries December 21st, 2020
NIST sensor experts invent supercool mini thermometer November 17th, 2020
Quantum communication
Researchers realize efficient generation of high-dimensional quantum teleportation January 14th, 2021
A new candidate material for quantum spin liquids November 12th, 2020
Streamlining quantum information transmission July 17th, 2020
Researchers find safeguards for quantum communications July 10th, 2020
Thin films
FEFU scientists are paving way for future tiny electronics and gadgets August 28th, 2020
Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020
Govt.-Legislation/Regulation/Funding/Policy
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Controlling chemical catalysts with sculpted light January 15th, 2021
Researchers realize efficient generation of high-dimensional quantum teleportation January 14th, 2021
Possible Futures
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Chip Technology
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021
Quantum Computing
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
Stretching diamond for next-generation microelectronics January 5th, 2021
Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021
Optical computing/Photonic computing
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Experiment takes 'snapshots' of light, stops light, uses light to change properties of matter December 25th, 2020
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
Discoveries
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Announcements
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Quantum nanoscience
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021
Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |