Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Secure metropolitan quantum networks move a step closer

Abstract:
Successful new field tests of a continuous-variable quantum key distribution (CV-QKD) system over commercial fiber networks could pave the way to its use in metropolitan areas.

Secure metropolitan quantum networks move a step closer

Bristol, UK | Posted on May 31st, 2019

That is the key achievement from a joint team of Chinese scientists, published today in Quantum Science and Technology, which demonstrates CV-QKD transmission over commercial deployed fiber link with a distance of 50 kilometres.

Team leader and lead author, Prof. Hong Guo, from a joint team of Peking University and Beijing University of Posts and Telecommunications (PKU-BUPT joint team), Beijing, said: "CV-QKD provides, in principle, unconditional secret keys to protect people's data - such as banking information, emails and passwords.

"It has attracted much attention in the past few years, because it uses standard telecom components that operate at room temperature, instead of specific quantum devices such as single photon detectors etc, and it has potentially much higher secret key rates. However, most previous long-distance CV-QKD demonstrations were only done in laboratory fiber, without the disturbances caused by the field environment."

Lead authors Dr. Yichen Zhang and Prof. Song Yu, from the PKU-BUPT joint team, Beijing, said: "There are several challenges to bringing a practical CV-QKD system from a laboratory setup to the real world. Deployed commercial dark fibers are inevitably subject to much stronger perturbations from changing environmental conditions and physical stress. This in turn causes severe disturbances of the transmitted quantum states.

"They also suffer from higher losses due to splices, sharp bends and inter-fiber couplings. The software and hardware of CV-QKD modules must not only be designed to cope with all the conditions affecting the transmission fiber, but must also be robustly engineered to operate in premises designed for standard telecom equipment. Furthermore, as the systems need to run continuously and without frequent attention, they need to be designed to automatically recover from any errors and shield end users from service interruptions."

The PKU-BUPT joint research team carried out two field tests of CV-QKD over commercial fiber networks in two cities of China - Xi'an and Guangzhou - achieving transmission distances of 30.02 km (12.48 dB loss) and 49.85 km (11.62 dB loss), respectively.

Prof. Hong Guo said: "The longest previous field tests of a CV-QKD system were over a 17.52 km deployed fiber (10.25 dB loss) and a 17.7 km deployed fiber (5.6 dB loss), where the secret key rates were 0.2 kbps and 0.3 kbps, respectively.

"Comparing with these results, our results show a more than twice transmission distance, and a two orders-of-magnitude higher secret key rates, though in more lossy commercial fiber links.

"This is a significant step in bringing CV-QKD closer to everyday use. It has pushed CV-QKD towards a more practical setting, and, naturally, one may expect that a quantum-guaranteed secure metropolitan network could be built within reach of current technologies."

####

For more information, please click here

Contacts:
Simon Davies

44-011-793-01110

Copyright © IOP Publishing

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Physicists make graphene discovery that could help develop superconductors: Rutgers-led research could reduce energy use, improve electronic devices August 1st, 2019

Wireless/telecommunications/RF/Antennas/Microwaves

Technologies for the Sixth Generation Cellular Network: Ultra-rapid Electro-optical Modulators Convert Terahertz into Optical Data Signals - Publication in Nature Photonics July 25th, 2019

Army project may advance quantum materials, efficient communication networks July 25th, 2019

Analog Bits and GLOBALFOUNDRIES Deliver Differentiated Analog and Mixed Signal IP for High-Performance Mobile and Compute Applications: Analog Bits’ Analog and Mixed Signal IPs Including Various PLLs, PCIe Reference Clock, Sensors and Power Circuits with GLOBALFOUNDRIES 12nm Fin June 5th, 2019

Quantum communication

Army project may advance quantum materials, efficient communication networks July 25th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

Possible Futures

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Discoveries

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Announcements

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project