Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New data on ultrafast electron photoemission from metallic nanostructures obtained: The results of the Russian-Japanese experiment explain the mechanism of electron photoemission by metallic nanostructures under ultrafast laser excitation

Abstract:
Metallic nanoparticle ensembles are capable of emitting short bunches of electrons when irradiated by powerful laser pulses of femtosecond (1 fs = 10-15 s) duration. Scientists at Lobachevsky University have long been studying the plasmon effect -- the excitation by light of collective electron oscillations in nanoparticles and the amplification of the light field associated with these oscillations in the vicinity of the nanoparticle, which plays the main role in this process. It is the plasmon amplification of the field that provides effective photoemission of electrons from a metal.

New data on ultrafast electron photoemission from metallic nanostructures obtained: The results of the Russian-Japanese experiment explain the mechanism of electron photoemission by metallic nanostructures under ultrafast laser excitation

Nizhnij Novgorod, Russia | Posted on May 23rd, 2019

The prospects for practical application of plasmon nanostructures are associated with their use as ultrafast photocathodes to create pulsed sources of high-brightness coherent X-ray radiation and to produce microscopes with high temporal resolution.

The photoemission of electrons from metallic nanoparticles is accompanied by the emission of terahertz radiation (its range in the scale of electromagnetic waves is between light and microwaves), which makes it possible to use this radiation as a tool for studying photoemission.

"The intensity of terahertz radiation depends non-linearly on the intensity of the laser pulse and demonstrates a high nonlinearity order (from 3 to 6 in various experiments). Although the mechanism of terahertz radiation generation by photoelectrons is not fully understood, it is believed that the high order of nonlinearity is explained by the multi-photon nature of electron emission, that is, by the need to transfer energy from several laser photons to the electron for performing the work to release the electron from the metal," explains Michael Bakunov, Head of the General Physics Department at Lobachevsky University.

To test the hypothesis of a multi-photon photoemission mechanism, scientists from Lobachevsky University together with their Japanese colleagues from Shinshu University, Osaka University and Tokyo Institute of Technology conducted an experiment in which the same metallic nanostructure, an array of gold nanorods ("golden nanoforest") was irradiated with powerful ultrashort light pulses of various wavelengths - from 600 nm to 1500 nm.

The result was surprising. Despite the fact that the energy of quanta differed more than twofold, the order of nonlinearity was approximately the same (4.5-4.8) for wavelengths from 720 to 1500 nm and even greater (6.6) for a wavelength of 600 nm (with the highest quantum energy).

"These results disprove the hypothesis of multi-photon emission of electrons. At the same time, the experimental dependences are in good agreement with the tunnel emission mechanism, whereby electrons are made to escape from the metal by a plasmon enhanced light field," concludes Michael Bakunov.

####

For more information, please click here

Contacts:
Nikita Avralev

Copyright © Lobachevsky University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results of Russian and Japanese scientists' research were published in one of the leading scientific journals, Scientific Reports:

Related News Press

News and information

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Physics

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

Wiring the quantum computer of the future: A novel simple build with existing technology: The basic units of a quantum computer can be rearranged in 2D to solve typical design and operation challenges April 24th, 2020

Possible Futures

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Discoveries

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Announcements

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Photonics/Optics/Lasers

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use May 7th, 2020

Research partnerships

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project