Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t

Collaboration between Novo Nordisk and Professor Kurt Gothelf's laboratory at Aarhus University yields novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology

Assembly of an artificial IgM from a DNA-antibody conjugate and a small 5-way DNA structure. The structure is characterized by Transmission Electron Microscopy (100 x 100 nm). With permission from Angewandte Chemie Int. Ed.

CREDIT
Thorbjørn Birger Nielsen and Professor Kurt Vesterager Gothelf, Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University
Collaboration between Novo Nordisk and Professor Kurt Gothelf's laboratory at Aarhus University yields novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology Assembly of an artificial IgM from a DNA-antibody conjugate and a small 5-way DNA structure. The structure is characterized by Transmission Electron Microscopy (100 x 100 nm). With permission from Angewandte Chemie Int. Ed. CREDIT Thorbjørn Birger Nielsen and Professor Kurt Vesterager Gothelf, Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University

Abstract:
Novo Nordisk and the Faculty of Science and Technology at Aarhus University have committed to a strategic alliance to further develop excellent research within protein and peptide-based drug development.

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t

Aarhus, Denmark | Posted on May 10th, 2019

Today, a step towards this goal has been taken in the publication of a new efficient method for connecting small pieces of proteins attached to short strings of DNA to antibodies. The method is developed by a research team at Novo Nordisk and Kurt Gothelf's research group (Gothelf Lab). The work is also performed in the framework of the Center for Multifunctional Biomolecular Drug Design which started last year under the Novo Nordisk Foundation Challenge Programme.

Mimicking naturally occurring molecules and components, like antibodies, can serve as a powerful tool in studying biological mechanisms. Here DNA nanotechnology is utilized to integrate protein function and DNA structures, where nucleic acids (DNA building blocks) are used as biological engineering materials rather than as the carriers of genetic information in living cells. The advantages of DNA nanostructures are that the production is scalable and can be made in the dimensions relevant for clinical use and for scientific experiments with cells. Connecting proteins to DNA structures adds complex functionalities, which can provide the structures with the ability to act as drugs, extend the lifespan of the molecules or direct the structures towards specific molecules.

Here the researchers show the development of a new method for connecting a piece of DNA to a specific spot on Immunoglobulin Gs (IgGs), which are the most prevalent antibodies in our blood stream. The connection (labeling) is directed by a small piece of protein (peptide), with affinity to a specific spot on the antibody, which positions a single piece of double-string DNA. The peptide along with half of the DNA double-string is easily removed afterwards, and leaves a single string of DNA chemically bound to the antibody. This makes it possible to connect the DNA-antibody conjugate to structures with a complementary DNA string attached.

The DNA-conjugates have been exploited in forming an IgM-like nanostructure, which is a large star-like pentameric DNA nanostructure made by assembling five DNA-antibody conjugates.

"It is very difficult to link DNA to an antibody in a specific and efficient manner and I am very excited about this work since it offers a solution to exactly that challenge. This is important since it allows us to assemble multiple complex biomolecules in a very well-defined manner just by mixing the components as demonstrated for the pseudo-IgM. The DNA strands are designed to control the self-assembly. The work has only been possible through a wonderful collaboration with Novo Nordisk, where they have contributed with their strong expertise in peptides and the researchers at iNANO including my collegue Professor Jørgen Kjems' group have contributed with bioconjugation and nanocharacterization. Everything happened in close collaboration in particular by the joint PhD student and first author Thorbjørn Nielsen, who did a fantastic job", says Professor Kurt Vesterager Gothelf (Aarhus University).

"I feel that Novo Nordisk has only just started the journey into DNA-modified protein drugs with Aarhus University. By combining our expertise in protein and peptide engineering with the unique DNA technologies developed by Kurt Gothelf's Laboratory, the project team led by senior scientists Emiliano Cló and Anne Louise Bank Kodal has creatively developed a novel molecular scaffold with promising opportunities for therapeutic applications. We hope that the developed technologies can help us understand critical protein-protein interactions of drug targets currently explored at Novo Nordisk. A virtually unexplored scientific field is evolving in front of us, and we cannot predict where it will take us, but opportunities are clearly huge. Needless to say; we are overly excited to collaborate with Aarhus University on DNA-modified proteins in the hunt for new biopharmaceuticals, now and in the future", says Director Thomas E. Nielsen, Research Chemistry, Novo Nordisk A/S.

###

This work was financially supported by the Innovation Fund Denmark, Novo Nordisk Foundation (CEMBID) and the National Danish Research Foundation (CDNA and CellPat).

The research has been carried out by scientists from Interdisciplinary Nanoscience Centre (iNANO), Department of Chemistry and Department of Molecular Biology and Genetics and in collaboration with Novo Nordisk A/S. Professor Kurt Vesterager Gothelf has been in charge of the research team behind the study.

####

For more information, please click here

Contacts:
Kurt Vesterager Gothelf

Copyright © Aarhus University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read about the study in Angewandte Chemie Int. Ed.:

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Cancer

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Vaccine design can dramatically improve cancer immunotherapies: Effectiveness depends on molecular architecture and 3D presentation of components May 6th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Possible Futures

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Nanomedicine

Better microring sensors for optical applications May 10th, 2019

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Vaccine design can dramatically improve cancer immunotherapies: Effectiveness depends on molecular architecture and 3D presentation of components May 6th, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Nanobiotechnology

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Vaccine design can dramatically improve cancer immunotherapies: Effectiveness depends on molecular architecture and 3D presentation of components May 6th, 2019

Arrowhead Pharmaceuticals to Present at Upcoming May 2019 Conferences May 3rd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project