Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Multistep self-assembly opens door to new reconfigurable materials

Materials science and engineering professor Qian Chen, center, and graduate students Binbin Luo, left, and Ahyoung Kim find inspiration in biology to help investigate how order emerges from self-assembling building blocks of varying size and shape.

CREDIT
Photo by L. Brian Stauffer
Materials science and engineering professor Qian Chen, center, and graduate students Binbin Luo, left, and Ahyoung Kim find inspiration in biology to help investigate how order emerges from self-assembling building blocks of varying size and shape. CREDIT Photo by L. Brian Stauffer

Abstract:
Self-assembling synthetic materials come together when tiny, uniform building blocks interact and form a structure. However, nature lets materials like proteins of varying size and shape assemble, allowing for complex architectures that can handle multiple tasks.

Multistep self-assembly opens door to new reconfigurable materials

Champaign, IL | Posted on April 19th, 2019

University of Illinois engineers took a closer look at how nonuniform synthetic particles assemble and were surprised to find that it happens in multiples phases, opening the door for new reconfigurable materials for use in technologies such as solar cells and catalysis.

The findings are reported in the journal Nature Communications.

"Traditional self-assembly can be thought of like a grocery store stacking apples for a display in the produce section," said Qian Chen, a professor of materials science and engineering and lead author of the new study. "They would need to work with similarly sized and shaped apples - or particles in the case of self-assembly - to make the structure sturdy."

In the new study, Chen's group observed the behavior of microscale silver plates of varied size and nanoscale thickness in liquids. Because the particles used in self-assembling materials are so small, they behave like atoms and molecules, which allow researchers to use classical chemistry and physics theories to understand their behavior, the researchers said.

The nonuniform particles repel and attract according to laws of nature in plain, deionized water. However, when the researchers add salt to the water, changing electrostatic forces trigger a multistep assembly process. The nonuniform particles begin to assemble to form columns of stacked silver plates and further assemble into increasingly complex, ordered 3D hexagonal lattices, the team found.

"We can actually witness the particles assemble in this hierarchy using a light microscope," said Binbin Luo, a materials science and engineering graduate student and study co-author. "This way, we can track particle motions one by one and study the assembly dynamics in real time."

"The findings of this study may allow for the development of reconfigurable self-assembly materials," said Ahyoung Kim, a materials science and engineering graduate student and study co-author. "These materials can change from one type of solid crystal to another type with different properties for a variety of applications."

"Another benefit of this finding is that it can be generalized to other types of systems," Chen said. "If you have another type of nanoparticle, be it magnetic or semiconducting, this hierarchal assembly principal still applies, allowing for even more types of reconfigurable materials."

###

Graduate students John W. Smith and Zihao Ou, former postdoctoral researcher Juyeong Kim, and undergraduate student Zixuan Wu also contributed to this study.

The National Science Foundation supported this research.

####

For more information, please click here

Contacts:
Lois Yoksoulian

217-244-2788

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper "Hierarchical self-assembly of 3D lattices from polydisperse anisometric colloids" is available from:

Related News Press

News and information

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Chemistry

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Gem-like nanoparticles of precious metals shine as catalysts: Heated particles shift shape and become highly active catalytically September 12th, 2019

Nanostructured material with potential for use in catalyzers: A titanium oxide nanofiber sheet was developed by a FAPESP-funded research group through electrospinning and atomic layer deposition August 30th, 2019

Magnetism

Scientists couple magnetization to superconductivity for quantum discoveries September 6th, 2019

Measuring changes in magnetic order to find ways to transcend conventional electronics September 6th, 2019

Studying quantum phenomena in magnetic systems to understand exotic states of matter August 21st, 2019

Possible Futures

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Self Assembly

A new way of making complex structures in thin films: Self-assembling materials can form patterns that might be useful in optical devices July 5th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

DNA origami to scale-up molecular motors June 13th, 2019

Can a flowing liquid-like material maintain its structural order like crystals? February 27th, 2019

Discoveries

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Materials/Metamaterials

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nationís first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Scientists create a nanomaterial that is both twisted and untwisted at the same time: The material developed at University of Bath allows for incredibly sensitive detection of the direction molecules twist September 13th, 2019

MIT engineers develop 'blackest black' material to date: Made from carbon nanotubes, the new coating is 10 times darker than other very black materials September 13th, 2019

Announcements

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Energy

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Inspired by natural signals in living cells, researchers design artificial gas detector: Tiny box puts itself together and glows September 13th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Rice reactor turns greenhouse gas into pure liquid fuel: Lab's 'green' invention reduces carbon dioxide into valuable fuels September 3rd, 2019

Solar/Photovoltaic

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

New synthesis method opens up possibilities for organic electronics August 7th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project