Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Tuneable reverse photochromes in the solid state

Abstract:
A new technique allows the design of solid materials that are coloured in the dark. ICN2 researchers from the Nanostructured Functional Materials Group, led by Dr Daniel Ruiz, have developed it in collaboration with the Department of Chemistry of the UAB. Their results, published in ACS Applied Materials & Interfaces with Dr Claudio Roscini as its last author, can have applications in rewritable displays or optical data storage systems.

Tuneable reverse photochromes in the solid state

Barcelona, Spain | Posted on April 3rd, 2019

Photochromes are dyes that change their colour depending on the light they receive. When light is switched off they can either remain in their photoinduced state (P-type photochromes) or turn back to their original state (T-type photochromes). The last ones may colour when irradiated, bleaching when light is moved away (direct photochromism) or discolour under irradiation, getting back their colour in the dark (reverse photochromism).

During the last decades, both the industrial and the academic sectors have shown growing interest toward organic photochromes for the preparation of colour-tuneable functional materials. Ophthalmic lenses and smart windows are examples of current applications based on direct photochromism. However, functional solid devices based on reverse T-type photochromes are very scarce and only started to be reported recently (e.g., in multicoloured light-responsive rewritable devices).

Different strategies have been explored to obtain reverse photochromism with organic substances called spiro compounds. Nevertheless, the materials produced so far do not provide flexible tuneability of their photochromic responses. That is, their colour and the speed at which the change is produced cannot be adjusted. Also, chemical reactions are needed to modify the structure of the photochrome so that it produces the required effect.

A new, straightforward, reactions-free and universal strategy to obtain solid materials with highly tuneable reverse photochromism has been recently developed from a collaboration between the ICN2 and the Department of Chemistry of the UAB, and published in ACS Applied Materials & Interfaces. The last author of the article and leader of the research is Dr Claudio Roscini, who supervised the work of the PhD student └lex JuliÓ, both from the ICN2 Nanostructured Functional Materials Group, led by Dr Daniel Ruiz. The author from the Chemistry Department of the UAB is Dr Jordi Hernando. These researchers employed commercially available organic compounds from the family of spiropyran, which can be stabilized to different states with different colours and colouration rates by simply varying the nature of the surrounding media (functional phase-change-material).

Moreover, they transferred this behaviour to solid matrices by preparing polymer capsules loaded with spiropyran solutions of functional phase-change-material (which provides the initial colour of the dye) and eventually dispersing them in the final material of interest. As a result, polymer films with up to three different photochromic responses regarding colours and switching rates could be generated from the same commercial dye. This represents an unprecedented tuneability of the photochromic properties in the solid state.

Considering that more colours could be obtained by combining capsules of different types, which might also display other behaviours, such as thermochromism (changing colours with temperature), functional materials could be prepared from spiropyran dyes exhibiting multicolour and multistimuli responses.

####

For more information, please click here

Contacts:
└lex ArgemÝ
Phone: +34937372607
Fax: 08193

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article reference

Related News Press

News and information

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Possible Futures

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Discoveries

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Materials/Metamaterials

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Building next gen smart materials with the power of sound May 28th, 2019

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Announcements

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

New record: 3D-printed optical-electronic integration June 18th, 2019

No ink needed for these graphene artworks: Artist employs Rice University lab's laser-induced graphene as medium for ultramodern art May 3rd, 2019

Researchers grow cells in 'paper organs' May 1st, 2019

New composite advances lignin as a renewable 3D printing material December 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project