Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging

Model of a microlens directly printed onto the facet of a laser chip
(Source: Nanoscribe)
Model of a microlens directly printed onto the facet of a laser chip (Source: Nanoscribe)

Abstract:
ggenstein-Leopoldshafen With its technology expertise in 3D microfabrication, Nanoscribe participates in the recently started research project "MiLiQuant", funded by the BMBF. Together with the companies Q.ant, Zeiss and Bosch as well as the Johannes Gutenberg-University Mainz and the University Paderborn, miniaturized, frequency- and power-stable diode lasers will be developed within the next three years. Aim of the project is to develop largely alignment- and maintenance-free radiation sources for an industrial field of application:

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging

Eggenstein-Leopoldshafen, Germany | Posted on April 1st, 2019

For example, sensors for medical diagnostics or autonomous driving as well as quantum-based imaging processes for medical technology.

Dr. Michael Thiel, Chief Science Officer at Nanoscribe, sees great potential for quantum technology in the use of additive micro-optics: "With our 3D printers, high-precision micro-optical components can be produced in shortest time with submicrometer resolution and enormous design freedom. We are happy to contribute our profound know-how to the MiLiQuant project for the further development of packaging technologies."

Nanoscribe 3D printers achieve outstanding precision based on two-photon polymerization (2PP). Micro-optics with challenging optical designs can be printed directly onto laser facets, glass fibers or microchips. The printed structures achieve an optical quality with surface roughness in the range of a few nanometers. In the MiLiQuant project, the printed components will be assembled with other elements into a compact package. Such miniaturized light sources are crucial for the alignment- and maintenance-free use of this quantum technological innovation.

####

About Nanoscribe GmbH
Nanoscribe GmbH, located in Eggenstein-Leopoldshafen near Karlsruhe (Germany), develops and provides 3D printers for microfabrication as well as photoresins and process solutions. Since the foundation in 2007, the company has managed to turn from a spin-off of the Karlsruhe Institute of Technology (KIT, Germany) to a medium-sized company with more than 65 employees. Nanoscribe established itself as a global market- and technology leader for 3D printing on the micro- and mesoscale. Worldwide, more than 1,000 users in top universities and pioneer companies benefit from Nanoscribe´s technology and award-winning solutions for microfabrication.

Contacts:
Anke Werner
Media Contact
Phone +49 721 981 980 501

Copyright © Nanoscribe GmbH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More information about MiLiQuant can be found here (in German):

Related News Press

News and information

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Imaging

Raman, UV-visible-NIR, Photoluminescence and Polarization Spectroscopy of Microscopic Samples May 29th, 2020

Eavesdropping on single molecules with light by replaying the chatter May 15th, 2020

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use May 7th, 2020

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

Nanomedicine

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

2D sandwich sees molecules with clarity: Rice University engineers adapt 2D ‘sandwich’ for surface-enhanced Raman spectroscopy May 15th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Sensors

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Making quantum 'waves' in ultrathin materials: Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale May 15th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

MOF material offers optical sensing of NO2 pollutant for air quality measurements April 30th, 2020

Announcements

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Industrial

Bubble-capturing surface helps get rid of foam: Bubbly buildup can hinder many industrial processes, but a new method can reduce or even eliminate it February 12th, 2020

NIOSH requests data to help develop exposure limits for nanomaterials February 1st, 2020

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Photonics/Optics/Lasers

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use May 7th, 2020

Alliances/Trade associations/Partnerships/Distributorships

BNNano and Ruhl Strategic Partners Align for Nanotube Market Growth Ruhl to Leverage Strategic Acumen and Ecosystem Network of Advanced Materials & Technology Companies to Accelerate Growth for BNNano March 9th, 2020

New European Project to Fast-Track Adoption Of Cyber-Physical Systems (CPS) by SMEs: DigiFed to Demonstrate Potential of CPS Digital Technologies in Hardware Security, Human-Machine Interaction, and Autonomy for Small & Midsized Companies January 29th, 2020

American Chemical Society names Philip Proteau as new editor-in-chief of the Journal of Natural Products January 24th, 2020

American Chemical Society names Dr. James Milne head of its Publications Division January 24th, 2020

Research partnerships

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project