Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging

Model of a microlens directly printed onto the facet of a laser chip
(Source: Nanoscribe)
Model of a microlens directly printed onto the facet of a laser chip (Source: Nanoscribe)

Abstract:
ggenstein-Leopoldshafen With its technology expertise in 3D microfabrication, Nanoscribe participates in the recently started research project "MiLiQuant", funded by the BMBF. Together with the companies Q.ant, Zeiss and Bosch as well as the Johannes Gutenberg-University Mainz and the University Paderborn, miniaturized, frequency- and power-stable diode lasers will be developed within the next three years. Aim of the project is to develop largely alignment- and maintenance-free radiation sources for an industrial field of application:

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging

Eggenstein-Leopoldshafen, Germany | Posted on April 1st, 2019

For example, sensors for medical diagnostics or autonomous driving as well as quantum-based imaging processes for medical technology.

Dr. Michael Thiel, Chief Science Officer at Nanoscribe, sees great potential for quantum technology in the use of additive micro-optics: "With our 3D printers, high-precision micro-optical components can be produced in shortest time with submicrometer resolution and enormous design freedom. We are happy to contribute our profound know-how to the MiLiQuant project for the further development of packaging technologies."

Nanoscribe 3D printers achieve outstanding precision based on two-photon polymerization (2PP). Micro-optics with challenging optical designs can be printed directly onto laser facets, glass fibers or microchips. The printed structures achieve an optical quality with surface roughness in the range of a few nanometers. In the MiLiQuant project, the printed components will be assembled with other elements into a compact package. Such miniaturized light sources are crucial for the alignment- and maintenance-free use of this quantum technological innovation.

####

About Nanoscribe GmbH
Nanoscribe GmbH, located in Eggenstein-Leopoldshafen near Karlsruhe (Germany), develops and provides 3D printers for microfabrication as well as photoresins and process solutions. Since the foundation in 2007, the company has managed to turn from a spin-off of the Karlsruhe Institute of Technology (KIT, Germany) to a medium-sized company with more than 65 employees. Nanoscribe established itself as a global market- and technology leader for 3D printing on the micro- and mesoscale. Worldwide, more than 1,000 users in top universities and pioneer companies benefit from Nanoscribe´s technology and award-winning solutions for microfabrication.

Contacts:
Anke Werner
Media Contact
Phone +49 721 981 980 501

Copyright © Nanoscribe GmbH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More information about MiLiQuant can be found here (in German):

Related News Press

News and information

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Imaging

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Better microring sensors for optical applications May 10th, 2019

Nanomedicine

A molecular glue to overcome cancer drug resistance? Small molecule drug may prevent chemotherapy resistance June 7th, 2019

Arrowhead Pharmaceuticals to Present at Upcoming June 2019 Conferences June 2nd, 2019

Chemists build a better cancer-killing drill: Rice U.-designed molecular motors get an upgrade for activation with near-infrared light May 29th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Sensors

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Kanazawa University research: Opposite piezoresistant effects of rhenium disulfide in two principle directions June 13th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Announcements

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Industrial

Building next gen smart materials with the power of sound May 28th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Better microring sensors for optical applications May 10th, 2019

Ensure Safety and Keep Costs Down: Solving Industrial Challenges with Nanotube-Containing Polyurethane Shafts April 26th, 2019

Photonics/Optics/Lasers

New record: 3D-printed optical-electronic integration June 18th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Alliances/Trade associations/Partnerships/Distributorships

Dashing the dream of ideal 'invisibility' cloaks for stress waves June 7th, 2019

Analog Bits and GLOBALFOUNDRIES Deliver Differentiated Analog and Mixed Signal IP for High-Performance Mobile and Compute Applications: Analog Bits’ Analog and Mixed Signal IPs Including Various PLLs, PCIe Reference Clock, Sensors and Power Circuits with GLOBALFOUNDRIES 12nm Fin June 5th, 2019

nPoint piezo driven nanopositioning flexure stages now available from Elliot Scientific June 4th, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Research partnerships

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Beyond 1 and 0: Engineers boost potential for creating successor to shrinking transistors May 30th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project