Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Wood-based Technology Creates Electricity from Heat (Nature Materials)

Abstract:
Researchers at the University of Maryland have created a heat-to-electricity device that runs on ions that could someday harness the body’s heat to provide energy.

Wood-based Technology Creates Electricity from Heat (Nature Materials)

College Park, MD | Posted on March 25th, 2019

Liangbing Hu and Robert Briber of the department of materials science, and Siddhartha Das of mechanical engineering, transformed a piece of wood into a flexible membrane that generates energy from the same type of electric current (ions) that the human body runs on. This energy is generated using charged channel walls and other unique properties of the wood’s natural nanostructures. With this new wood-based technology, they can use a small temperature differential to efficiently generate ionic voltage, as demonstrated in a paperpublished March 25 in the journal Nature Materials.

If you’ve ever been outside during a lightning storm, you’ve seen that generating charge between two very different temperatures is easy. But for small temperature differences, it is more difficult. Hu, Briber and Das tackled this challenge. Hu said they now have “demonstrated their proof-of-concept device to harvest low-grade heat using nanoionic behavior of processed wood nanostructures”.

Trees grow channels that move water between the roots and the leaves. These are made up of fractally-smaller channels, and at the level of a single cell, channels just nanometers or less across. The team has harnessed these channels to regulate ions.

The researchers used basswood, which is a fast-growing tree with low environmental impact. They treated the wood and removed two components – lignin, that makes the wood brown and adds strength, and hemicellulose, which winds around the layers of cells binding them together. This gives the remaining cellulose its signature flexibility. This process also converts the structure of the cellulose from type I to type II which is a key to enhancing ion conductivity.

A membrane, made of a thin slice of wood, was bordered by platinum electrodes, with sodium-based electrolyte infiltrated into the cellulose. The regulate the ion flow inside the tiny channels and generate electrical signal. “The charged channel walls can establish an electrical field that appears on the nanofibers and thus help effectively regulate ion movement under a thermal gradient,” said Tian Li, the first author of the paper.

Li said that the sodium ions in the electrolyte insert into the aligned channels, which is made possible by the crystal structure conversion of cellulose and by dissociation of the surface functional groups.

“We are the first to show that, this type of membrane, with its expansive arrays of aligned cellulose, can be used as a high-performance ion selective membrane by nanofluidics and molecular streaming and greatly extends the applications of sustainable cellulose into nanoionics,” Li summed up the paper.

This latest work builds on, and adds to, extensive previous UMD research to develop novel and potentially high impact applications of modified wood.

Current affiliations for the researchers are:

University of Maryland College Park – Tian Li, Xin Zhang, Steven D. Lacey, Ruiyu Mi, Feng Jiang, Jianwei Song, Jiaqi Dai, Yonggang Yao, Robert M. Briber & Liangbing Hu of the Department of Materials Science and Engineering, and Guang Chen & Siddhartha Das, Department of Mechanical Engineering

University of Colorado – Xinpeng Zhao & Ronggui Yang, Department of Mechanical Engineering

University of British Columbia – Feng Jiang & Zhongqi Liu, Department of Wood Science.

####

For more information, please click here

Contacts:
Martha J. R. Heil
Science Communicator, Maryland NanoCenter


301-405-0876 (office)
626-354-5613 (cell)
office: 1118 Kim Engineering Building
mail: Mailroom, A.V. Williams Building, 8223 Paint Branch Dr.
University of Maryland
College Park, MD 20742

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

"Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting," Nature Materials (2019):

UMD Researchers Create Super Wood Stronger Than Most Metals (Feb. 2018):

Wood Windows are Cooler than Glass (June 2013):

A Battery Made of Wood? (August 2016)

Related News Press

News and information

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

Possible Futures

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

Discoveries

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

Scientists create a nanomaterial that is both twisted and untwisted at the same time: The material developed at University of Bath allows for incredibly sensitive detection of the direction molecules twist September 13th, 2019

Announcements

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

Journal Nanotechnology Progress International (JONPI), volume 7, issue 1 out September 16th, 2019

Energy

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Inspired by natural signals in living cells, researchers design artificial gas detector: Tiny box puts itself together and glows September 13th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Rice reactor turns greenhouse gas into pure liquid fuel: Lab's 'green' invention reduces carbon dioxide into valuable fuels September 3rd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project