Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints

Abstract:
Leti, a research institute of CEA Tech, today announced prototype development of highly miniaturized, portable optical sensors for chemical detection of gas.

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints

Grenoble, France | Posted on March 21st, 2019

The next-generation, centimeter-size photo-acoustic sensors are based on mid-infrared photonic integrated circuits (MIR PICs). These silicon PICs, created by integrating optical circuits onto millimeter-size silicon chips, make extremely robust miniature systems, in which discrete components are replaced by on-chip equivalents. This makes them easier to use and reduces their cost dramatically, expected at least by a factor of 10.



Developed by the European Commission’s REDFINCH Project headed by CEA-Leti, the prototype photo acoustic sensors were fabricated on a CMOS line in a miniaturized silicon photo-acoustic cell, which allows extreme integration.



In demonstrations, the sensors match the performance of bulky commercial gas-sensing systems commonly available today. They are targeted at applications such as process gas analysis in refineries, gas leak detection in petrochemical plants and pipelines, and protein analysis in liquids for the dairy industry.

An invited paper on the breakthrough, “Photo-acoustic cell on silicon for mid-infrared QCL-based spectroscopic analysis”, won Best Paper Award at Photonics West 2019.



The sensors aims to consume less than 10W in continuous operation. They can be operated in a slow pulse-burst mode for infrastructure monitoring and when leaks are detected, the pulse frequency of the sensor automatically increases. This keeps average power consumption very low so the sensors can be battery-operated for more than a year or powered by an ambient energy harvester, e.g. a solar cell.



“The big picture is that the miniaturization of photo-acoustic spectroscopy based on quantum cascade lasers (QCLs) is entering the stage of mass production,” said Jean-Guillaume Coutard, an instrumentation engineer at Leti, who coordinate the project.



To develop these chemical sensors, the REDFINCH consortium overcame the challenge of implementing their capabilities in the important mid-infrared region, where many important chemical and biological species have strong absorption fingerprints.



“This allows both the detection and concentration measurement of a wide range of gases, liquids and biomolecules,” Coutard said. “This is crucial for applications such as health monitoring and diagnosis, detection of biological compounds and monitoring of toxic gases.”



“This project is a perfect fit for mirSense’s development roadmap. Our mission is to democratize QCL usage,” said Mathieu Carras, CEO of mirSense, which participated in the project. “mirSense is ready to produce these state-of-the-art integrated QCL-based components and do a similar job on electronics and software to bring the value of this technology to the market.”



The consortium members and contributions include:

· Cork Institute of Technology (Ireland) – PIC design & fabrication, hybrid integration

· Université de Montpellier (France) – Laser growth on Si, photodetector growth

· Technische Universität Wien (Austria) – Liquid spectroscopy, assembly/test of sensors

· mirSense (France) – MIR sensor products, laser module integration

· Argotech a.s. (Czech Republic) Assembly/packaging of PICs

· Fraunhofer IPM (Germany) – Gas spectroscopy, instrument design/assembly

· Endress+Hauser (Germany) Process gas analysis and expertise, testing validation.

####

About Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare; Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 60 startups and is a member of the Carnot Institutes network. This year, the institute celebrates its 50th anniversary. Follow us on www.leti-cea.com and @CEA_Leti.

CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

For more information, please click here

Contacts:
Press Contact

Agency

+33 6 74 93 23 47



Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Sensors

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Inspired by natural signals in living cells, researchers design artificial gas detector: Tiny box puts itself together and glows September 13th, 2019

Sticker makes nanoscale light manipulation easier to manufacture August 27th, 2019

Discoveries

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Announcements

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Energy

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Inspired by natural signals in living cells, researchers design artificial gas detector: Tiny box puts itself together and glows September 13th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Rice reactor turns greenhouse gas into pure liquid fuel: Lab's 'green' invention reduces carbon dioxide into valuable fuels September 3rd, 2019

Photonics/Optics/Lasers

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Scientists create a nanomaterial that is both twisted and untwisted at the same time: The material developed at University of Bath allows for incredibly sensitive detection of the direction molecules twist September 13th, 2019

Optical vacuum cleaner can manipulate nanoparticles: The TPU and international researchers developed a concept for constructing an optical vacuum cleaner; due to its optical properties, it can trap nanoparticles from the environment; currently, there are no sufficiently effective September 13th, 2019

Laser-based ultrasound approach provides new direction for nondestructive testing: Patches coated with nanoparticles from candle soot found to generate ultrasonic waves that can be used to monitor the structural integrity of buildings September 4th, 2019

Alliances/Trade associations/Partnerships/Distributorships

Toppan Photomasks and GLOBALFOUNDRIES Enter into Multi-Year Supply Agreement August 15th, 2019

Nanoscribe expands its worldwide presence: Specialist for 3D nano and micro fabrication opens US subsidiary for service and sales July 31st, 2019

CEA’s Precise Localization Technology Boosts Quality Control & Efficiency in Desoutter Tools: Algorithm and Embedded Receptors in Desoutter’s Electric & Power Tools Deliver Real-Time Monitoring & Help Meet Industry 4.0 Goals June 26th, 2019

Dashing the dream of ideal 'invisibility' cloaks for stress waves June 7th, 2019

Research partnerships

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

One-atom switch supercharges fluorescent dyes: Rice University lab discovers simple technique to make biocompatible 'turn-on' dyes September 13th, 2019

Hard as a diamond? Scientists predict new forms of superhard carbon: A study identifies dozens of new carbon structures that are expected to be superhard, including some that may be about as hard as diamonds September 9th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project