Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Lightweight metal foams become bone hard and explosion proof after being nanocoated

Taking inspiration from bones: Materials scientists Stefan Diebels (l.) and Anne Jung can customize their lightweight and strong metal foams for a wide range of applications.

CREDIT
Credit: Oliver Dietze
Taking inspiration from bones: Materials scientists Stefan Diebels (l.) and Anne Jung can customize their lightweight and strong metal foams for a wide range of applications. CREDIT Credit: Oliver Dietze

Abstract:
Strong enough not only for use in impact protection systems in cars, but able to absorb the shock waves produced by a detonation. Those are just some of the properties shown by the metallic foams developed by materials scientists Stefan Diebels and Anne Jung at Saarland University. Their super lightweight and extremely strong metal foams can be customized for a wide range of applications. The inspiration for the new foam system came from nature: bones. Using a patented coating process, the Saarbrücken team is able to manufacture highly stable, porous metallic foams that can be used, for example, in lightweight construction projects. The initial lattice substrate is either an aluminium or polymer foam, not dissimilar to a kitchen sponge. The research team and the start-up company that their work has spawned (Mac Panther Materials GmbH, Bremen, Germany) will be at Hannover Messe where they will be showcasing their process from the 1st to the 5th of April at the Saarland Research and Innovation Stand (Hall 2, Stand B46).

Lightweight metal foams become bone hard and explosion proof after being nanocoated

Hannover, Germany | Posted on March 14th, 2019

Bones are one of nature's many ingenious developments. They are strong and stable and can cope with loads almost as well as steel. But despite their strength, they are light enough to be easily moved by humans and animals. The secret lies in the combination of a hard exterior shell that encases a porous lattice-like network of bone tissue in the interior of the bone. This structure saves on material and reduces weight. Metal foams are able to mimic these naturally occurring bone structures. The synthetic foams are porous, open-cell structures that are manufactured from metals and that have the appearance of a sponge. The metal foams currently available are certainly lightweight, but the production process is both complicated and expensive. And the stability of the sponge-like foam structure is still too weak and not resilient enough for many applications. This is certainly true of aluminium foam, which is the most common type produced today. 'This is the reason why metal foams have so far not had any real market impact,' explains materials scientist Stefan Diebels, Professor of Applied Mechanics at Saarland University.

His research team has found a way to significantly strengthen the lattice structure of the metal foams, producing a lightweight, extremely stable and versatile material. Diebels and materials scientist Dr. Anne Jung have developed a patented procedure for coating the individual struts that make up the open-cell interior lattice. As a result, the exterior of the foam is stronger and more stable and the structure is now able to withstand extreme loads. However, the treated foam remains amazingly light. The team started out using aluminium foams but are now using inexpensive polyurethane foams whose strength comes entirely from the thin metal coating applied to the lattice structure. 'The resulting metal foams have a low density, a large surface area but a small volume. In relation to their weight, these foams are extremely strong and rigid,' says Stefan Diebels. In fact, they are so strong that they are being used as mobile barriers to provide protection from the shock waves caused by explosions. Even when exposed to underwater detonations, the foams simply 'swallow' the resulting sound and pressure waves, thus protecting sensitive marine organisms from the effects of these powerful shock waves.

'Most of the applications we focus on are generally less spectacular, such as the use of our foams in lightweight construction,' explains Dr. Anne Jung, a senior research scientist in Diebels' group. Dr. Jung actually completed two doctoral theses. She was awarded the German Thesis Award from the Körber Foundation for 'the most important dissertation of the year with significant relevance for society' for her first doctoral theses on the subject of metal foams. Many products can be made lighter and more stable by drawing inspiration from nature's design ingenuity. For example, load-bearing structures in cars and aeroplanes could be manufactured from the metal foam. 'They can be installed as reinforcing struts in the bodywork, while also providing impact protection. The struts can take up large amounts of energy and are able to absorb the force of a collision when parts of the porous core fracture under impact,' explains Anne Jung. There are numerous areas of application for these foams, such as in catalysis, as the material is porous and thus allows liquids and gases to flow through it, or for shock absorption or as a heat shield, as the foams exhibit excellent heat resistance. The foam material can also be used for electromagnetic screening or in architectural applications, where it finds use as sound-absorbing cladding or as a building design element.

The coating is applied in an electroplating bath. The most challenging aspect of the electroplating process was achieving a uniform coating of the ultrathin layer throughout the entire interior of the foam structure. 'The problem', explains Anne Jung, 'is that the metallic foam acts as a Faraday cage.' As the interior of the foam is surrounded by electrically conducting material, electric current and thus the coating is diverted to the exterior of the foam body and does not travel through the interior of the foam - it's similar to what happens when lightning strikes a car. The breakthrough came when Anne Jung decided to use a special anode cage, which allows her to apply a uniform, nanocrystalline coating throughout the entire lattice network. 'The patented method also functions on the industrial scale with foams with very large surface areas,' adds Jung.

The Saarbrücken team has authored numerous important scientific papers in the field and is now regarded as one of the world's leading research groups in the micromechanical characterization of these porous metal lattices. Using an array of experiments, simulations, tension and compression testing, optical microscopy and x-ray computed tomography, the research team have examined the structure, pore geometry and curvature of the struts and have shown how varying the thickness of the nanocoating can impart different properties to the foam materials. By varying the composition of the coating, its thickness or the pore size, the team is able to customize foams to meet different application needs. For example, nanocoating the open-cell lattice structure with nickel produces particularly strong foams, with copper the foam material exhibits high thermal conductivity, with silver they have good antibacterial properties, and with gold the foam is highly decorative. The Saarbrücken research group, which includes students and doctoral researchers, are continuing to work on optimizing both the production process and the material itself.

Background

In order to facilitate the commercial and industrial application of their research results, the Saarbrücken researchers have entered into a technology transfer pilot project together with Saarland University's Knowledge and Technology Transfer Office (KWT) and the external start-up partners Dr. Andreas Kleine and Michael Kleine, and have established the company Mac Panther Materials GmbH with headquarters in Bremen. Both Dr. Jung and Professor Diebels have a stake in the new company as does Saarland University's knowledge and technology transfer company WuT.

####

For more information, please click here

Contacts:
Stefan Diebels

49-068-130-22887

PD Dr.-Ing. Dr. rer. nat. Anne Jung:
Tel.: +49 (0)681 302-3958, -2169, Email:

Dr. Andreas Kleine
(Mac Panther Materials GmbH
Tel.: +49 (0) 421-5 57 16-6

Copyright © Saarland University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This press release is available in German at:

For more information visit:

Related News Press

News and information

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Imaging

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Possible Futures

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Discoveries

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Announcements

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Tools

Nanometrics Announces $80 Million Share Repurchase Program March 14th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Flipping the view: New microscope offers options for drug discovery, safety and effectiveness February 28th, 2019

Patents/IP/Tech Transfer/Licensing

Flipping the view: New microscope offers options for drug discovery, safety and effectiveness February 28th, 2019

Shelley Claridge, an assistant professor at Purdue University, is leading research to improve electronic and energy conversion devices. (Image by Vincent Walter) January 24th, 2019

New composite advances lignin as a renewable 3D printing material December 28th, 2018

Study on low noise, high-performance transistors may bring innovations in electronics December 28th, 2018

Military

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Automotive/Transportation

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected January 28th, 2019

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

Aerospace/Space

Oxford Instruments and partners launch EU Horizon 2020 project ULISSES: Air sensors for everyone, everywhere March 7th, 2019

NSS Congratulates SpaceX and NASA on Docking Dragon 2 Spacecraft to International Space Station: A historic milestone in commercial space was achieved on March 3 March 7th, 2019

Avoiding the Crack of Doom: New imaging technique reveals how mechanical damage begins at the molecular scale February 25th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Events/Classes

NSS Congratulates SpaceX and NASA on Docking Dragon 2 Spacecraft to International Space Station: A historic milestone in commercial space was achieved on March 3 March 7th, 2019

Exchanging information securely using quantum communication in future fiber-optic networks: New research demonstrates potential solutions as transmission networks evolve to use multicore fiber March 6th, 2019

AIM Photonics Attends OFC 2019—the Optical Networking and Communication Conference & Exhibition to Share World-Class Capabilities and Partnership Opportunity Updates February 28th, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

Research partnerships

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

AIM Photonics Attends OFC 2019—the Optical Networking and Communication Conference & Exhibition to Share World-Class Capabilities and Partnership Opportunity Updates February 28th, 2019

CEA-Leti Breakthrough Opens Path to New Vaccine for HIV: Lipidots Platform Strengthens Immune Response to Protein That Is Key to HIV Vaccine; Results Presented in Nature Publishing Group’s npj Vaccines February 27th, 2019

Construction

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Weak hydrogen bonds key to strong, tough infrastructure: Rice University lab simulates polymer-cement composites to find strongest, toughest materials January 29th, 2018

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project