Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Defects help nanomaterial soak up more pollutant in less time: Rice U. researchers find new way to remove PFOS from industrial wastewater

By introducing defects into the structure of a metal-organic framework, or MOF, Rice University researchers found they could increase the amount of toxic pollutants called perfluorooctanesulfonic acid (PFOS) that the MOF could hold, as well as the speed with which it could adsorb them from heavily polluted industrial wastewater. (Image courtesy of Chelsea Clark/Rice University)
By introducing defects into the structure of a metal-organic framework, or MOF, Rice University researchers found they could increase the amount of toxic pollutants called perfluorooctanesulfonic acid (PFOS) that the MOF could hold, as well as the speed with which it could adsorb them from heavily polluted industrial wastewater. (Image courtesy of Chelsea Clark/Rice University)

Abstract:
Cleaning pollutants from water with a defective filter sounds like a non-starter, but a recent study by chemical engineers at Rice University found that the right-sized defects helped a molecular sieve soak up more perfluorooctanesulfonic acid (PFOS) in less time.

Defects help nanomaterial soak up more pollutant in less time: Rice U. researchers find new way to remove PFOS from industrial wastewater

Houston, TX | Posted on March 13th, 2019

In a study in the American Chemical Society journal ACS Sustainable Chemistry and Engineering, Rice University researchers Michael Wong, Chelsea Clark and colleagues showed that a highly porous, Swiss cheese-like nanomaterial called a metal-organic framework (MOF) was faster at soaking up PFOS from polluted water, and that it could hold more PFOS, when additional nanometer-sized holes ("defects") were built into the MOF.

PFOS was used for decades in consumer products like stain-resistant fabrics and is the best-known member of a family of toxic chemicals called "per- and polyfluoroalkyl substances" (PFAS), which the Environmental Protection Agency (EPA) describes as "very persistent in the environment and in the human body -- meaning they don't break down and they can accumulate over time."

Wong, professor and chair of Rice's Department of Chemical and Biomolecular Engineering and a professor of chemistry, said, "We are taking a step in the right direction toward developing materials that can effectively treat industrial wastewaters in the parts-per-billion and parts-per-million level of total PFAS contamination, which is very difficult to do using current technologies like granular activated carbon or activated sludge-based systems."

Wong said MOFs, three-dimensional structures that self-assemble when metal ions interact with organic molecules called linkers, seemed like good candidates for PFAS remediation because they are highly porous and have been used to absorb and hold significant amounts of specific target molecules in previous applications. Some MOFs, for example, have a surface area larger than a football field per gram, and more than 20,000 kinds of MOFs are documented. In addition, chemists can tune MOF properties -- varying their structure, pore sizes and functions -- by tinkering with the synthesis, or chemical recipe that produces them.

Such was the case with Rice's PFAS sorbent. Clark, a graduate student in Wong's Catalysis and Nanomaterials Laboratory, began with a well-characterized MOF called UiO-66, and conducted dozens of experiments to see how various concentrations of hydrochloric acid changed the properties of the final product. She found she could introduce structural defects of various sizes with the method -- like making Swiss cheese with extra-big holes.

"The large-pore defects are essentially their own sites for PFOS adsorption via hydrophobic interactions," Clark said. "They improve the adsorption behavior by increasing the space for the PFOS molecules."

Clark tested variants of UiO-66 with different sizes and amounts of defects to determine which variety soaked up the most PFAS from heavily polluted water in the least amount of time.

"We believe that introducing random, large-pore defects while simultaneously maintaining the majority of the porous structure played a large role in improving the adsorption capacity of the MOF," she said. "This also maintained the fast adsorption kinetics, which is very important for wastewater remediation applications where contact times are short."

Wong said the study's focus on industrial concentrations of PFAS sets it apart from most previously published work, which has focused on cleaning polluted drinking water to meet the current federal standards of 70 parts per trillion. While treatment technologies like activated carbon and ion exchange resins can be effective for cleaning low-level concentrations of PFAS from drinking water, they are far less effective for treating high-concentration industrial waste.

Although PFAS use has been heavily restricted by international treaty since 2009, the chemicals are still used in semiconductor manufacturing and chrome plating, where wastewater can contain as much as one gram of PFAS per liter of water, or about 14 billion times the current EPA limit for safe drinking water.

"In general for carbon-based materials and ion-exchange resins, there is a trade-off between adsorption capacity and adsorption rate as you increase the pore size of the material," Wong said. "In other words, the more PFAS a material can soak up and trap, the longer it takes to fill up. In addition, carbon-based materials have been shown to be mostly ineffective at removing shorter-chain PFASs from wastewater.

"We found that our material combines high-capacity and fast-adsorption kinetics and also is effective for both long- and short-chain perfluoroalkyl sulfonates," he said.

Wong said it's difficult to beat carbon-based materials in terms of cost because activated carbon has been a mainstay for environmental filtration for decades.

"But it's possible if MOFs become produced on a large-enough scale," he said. "There are a few companies looking into commercial-scale production of UiO-66, which is one reason we chose to work with it in this study."

Additional co-authors include Kimberly Heck and Camilah Powell, both of Rice. The research was supported by the National Science Foundation (NSF) Graduate Research Fellowship Program and by the NSF's Nanosystems Engineering Research Center on Nanotechnology-Enabled Water Treatment (NEWT). Based at Rice, NEWT is a multi-institutional effort launched in 2015 to develop compact, mobile, off-grid water-treatment systems that can provide clean water to millions of people and make U.S. energy production more sustainable and cost-effective.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Possible Futures

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Discoveries

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Announcements

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

An 'EpiPen' for spinal cord injuries July 12th, 2019

Environment

Black (nano)gold combat climate change July 5th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Better microring sensors for optical applications May 10th, 2019

Water

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

Making graphene-based desalination membranes less prone to defects, better at separating June 13th, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Industrial

CEA’s Precise Localization Technology Boosts Quality Control & Efficiency in Desoutter Tools: Algorithm and Embedded Receptors in Desoutter’s Electric & Power Tools Deliver Real-Time Monitoring & Help Meet Industry 4.0 Goals June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Building next gen smart materials with the power of sound May 28th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project