Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Hall effect becomes viscous in graphene: Researchers at the University of Manchester in the UK have discovered that electrons in graphene act like a very unique liquid

Abstract:
Researchers at The University of Manchester in the UK have discovered that the Hall effect - a phenomenon well known for more than a century - is no longer as universal as it was thought to be.

Hall effect becomes viscous in graphene: Researchers at the University of Manchester in the UK have discovered that electrons in graphene act like a very unique liquid

Manchester, UK | Posted on February 28th, 2019

In the research paper published in Science this week, the group led by Prof Sir Andre Geim and Dr Denis Bandurin found that the Hall effect can even be signifcantly, if electrons strongly interact with each other giving rise to a viscous flow. The new phenomenon is important at room temperature - something that can have important implications for when making electronic or optoelectronic devices.

Just like molecules in gases and liquids, electrons in solids frequently collide with each other and can thus behave like viscous fluids too. Such electron fluids are ideal to find new behaviours of materials in which electron-electron interactions are particularly strong. The problem is that most materials are rarely pure enough to allow electrons to enter the viscous regime. This is because they contain many impurities off which electrons can scatter before they have time to interact with each other and organise a viscous flow.

Graphene can come in very useful here: the carbon sheet is a highly clean material that contains only a few defects, impurities and phonons (vibrations of the crystal lattice induced by temperature) so that electron-electron interactions become the main source of scattering, which leads to a viscous electron flow.

"In previous work, our group found that electron flow in graphene can have a viscosity as high as ?0.1 m2s-1, which is 100 times higher than that of honey," said Dr Bandurin "In this first demonstration of electron hydrodynamics, we discovered very unusual phenomena like negative resistance, electron whirlpools and superballistic flow."

Even more unusual effects occur when a magnetic field is applied to graphene's electrons when they are in the viscous regime. Theorists have already extensively studied electro-magnetohydrodynamics because of its relevance for plasmas in nuclear reactors and in neutron stars, as well as for fluid mechanics in general. But, no practical experimental system in which to test those predictions (such as large negative magnetoresistance and anomalous Hall resistivity) was readily available until now.

In their latest experiments, the Manchester researchers made graphene devices with many voltage probes placed at different distances from the electrical current path. Some of them were less than one micron from each other. Geim and colleagues showed that while the Hall effect is completely normal if measured at large distances from the current path, its magnitude rapidly diminishes if probed locally, using contacts close to the current injector.

"The behaviour is radically different from the standard textbook physics" says Alexey Berdyugin, a PhD student who conducted the experimental work. "We observe that if the voltage contacts are far from the current contacts, we measure the old, boring Hall effect, instead of this new 'viscous Hall effect'. But, if we place the voltage probes near the current injection points - the area in which viscosity shows up most dramatically as whirlpools in electron flow - then we find that the Hall effect diminishes.

"Qualitative changes in the electron flow caused by viscosity persist even at room temperature if graphene devices are smaller than one micron in size, says Berdyugin. "Since this size has become routine these days as far as electronic devices are concerned, the viscous effects are important when making or studying graphene devices."

####

For more information, please click here

Contacts:
Ben Robinson

01-612-750-134

Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

Graphene/ Graphite

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

'Deep learning' casts wide net for novel 2D materials: Rice U. engineers show faster techniques to model atom-flat materials for bottom-up design April 10th, 2019

Magnetism

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

A quantum magnet with a topological twist: Materials with a kagome lattice pattern exhibit 'negative magnetism' and long-sought 'flat-band' electrons February 23rd, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Possible Futures

A light-activated remote control for cells April 17th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

Chip Technology

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Nanometrics to Announce First Quarter Financial Results on April 30, 2019 April 10th, 2019

Squeezed nanocrystals: A new model predicts their shape when blanketed under graphene April 5th, 2019

Optical computing/Photonic computing

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Researchers move closer to practical photonic quantum computing: New method fills critical need to measure large-scale quantum correlation of single photons February 28th, 2019

Discoveries

A light-activated remote control for cells April 17th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

Announcements

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A light-activated remote control for cells April 17th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project