Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists image conducting edges in a promising 2-D material

The bright zigzag lines indicate conduction features precisely at the edges of the monolayer WTe2. (Cui Lab/UC Riverside)
The bright zigzag lines indicate conduction features precisely at the edges of the monolayer WTe2. (Cui Lab/UC Riverside)

Abstract:
A research team comprised of scientists at the University of California, Riverside, and the University of Washington has for the first time directly imaged “edge conduction” in monolayer tungsten ditelluride, or WTe2, a newly discovered 2-D topological insulator and quantum material.

Scientists image conducting edges in a promising 2-D material

Riverside, CA | Posted on February 8th, 2019

The research makes it possible to exploit this edge conduction feature to build more energy-efficient electronic devices.

In a typical conductor, electrical current flows everywhere. Insulators, on the other hand, do not readily conduct electricity. In topological insulators, a special type of material, the interior works as an insulator, but the boundaries of such materials are guaranteed to be conductive due to its topological property, resulting in a feature called “topological edge conduction.”

Topology is the mathematical study of the properties of a geometric figure or solid that is unchanged by stretching or bending. Applying this concept to electronic materials leads to discoveries of many interesting phenomena, including topological edge conduction. Working like highways for electrons, channels of topological edge conduction allow electrons to travel with little resistance. Further, because edge channels can be potentially very narrow, electronic devices can be further miniaturized.

Study results appear today in Science Advances.

“Several materials have been shown to be 3-D topological insulators,” said Yongtao Cui, an assistant professor of physics and astronomy at UCR, who led the research. “But 2-D topological insulators are rare. Several recent experiments established that monolayer WTe2 is the first atomically thin 2-D topological insulator.”

Cui explained that for a 3-D topological insulator, conduction appears at its surfaces; for a 2-D sheet-like material, such conducting features are simply at the edges of the sheet.

Cui’s lab used a novel experimental technique called Microwave Impedance Microscopy, or MIM, to directly image the conduction at the edges of monolayer WTe2.

“Our results unambiguously confirm edge conduction in this promising material,” Cui said.

Although WTe2 has been known to exist for decades, interest in this material got a boost in only the last few years due to its exotic physical and electronic properties discovered using topological physics. WTe2 layers are stacked together via van der Waals interactions and can be easily exfoliated into thin, 2-D, graphene-like sheets.

“In addition to conduction at the edges in monolayer WTe2, we also found that the conductive channels can extend to the interior of the material, due to imperfections — such as cracks,” Cui said. “Our observations point to new ways to control and engineer such conduction channels via mechanical or chemical means.”

Cui’s collaborators at the University of Washington prepared the monolayer WTe2 samples. At UCR, his lab performed the MIM measurement, which involved sending a microwave electrical signal to a sharp metal tip, and positioning the tip near the surface of monolayer WTe2. By resolving the microwave signal bounced back by the sample, the researchers could determine whether the sample region directly below the tip was conductive or not.

“We scanned the tip across the entire sample and directly mapped the local conductivity,” Cui said. “We performed all the measurements at cryogenic temperatures, needed for monolayer WTe2 to exhibit the topological property. The topological properties of monolayer WTe2 can potentially serve as a platform to realize essential operations in quantum computing.”

Cui’s lab is already exploring new ways to manipulate the edge conduction channels and topological physics in monolayer WTe2.

“We are looking into whether stacking monolayer WTe2 with other 2-D materials can alter its topological property,” he said. “We are also using mechanical and chemical methods to create networks of conduction channels. The MIM technique we used offers a powerful means to characterize the conduction channels in topological materials such as monolayer WTe2.”

Cui was joined in the study by Yanmeng Shi, Ben Niu, and Brian A. Francisco of UCR; Joshua Kahn, Zaiyao Fei, Bosong Sun, Xinghan Cai, Xiaodong Xu, and David H. Cobden of the University of Washington; Di Wu of Nanjing University, China; and Zhi-Xun Shen of Stanford University; Shi, Kahn, and Niu are co-first authors of the research paper.

The work done at UCR was supported by Cui’s startup funds.

####

About University of California - Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment is more than 24,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email

For more information, please click here

Contacts:
Iqbal Pittalwala

(951) 827-6050
@UCR_Sciencenews

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

Imaging

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected January 28th, 2019

Graphene/ Graphite

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Large, stable pieces of graphene produced with unique edge pattern: Breakthrough in graphene research February 1st, 2019

Fluid-inspired material self-heals before your eyes: Coating for metals rapidly heals over scratches and scrapes to prevent corrosion January 30th, 2019

‘GO dough’ makes graphene easy to shape and mold: New form of graphene oxide is fun to play with — and solves manufacturing challenges January 25th, 2019

2 Dimensional Materials

Large, stable pieces of graphene produced with unique edge pattern: Breakthrough in graphene research February 1st, 2019

Possible Futures

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Chip Technology

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

Discoveries

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Materials/Metamaterials

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Using artificial intelligence to engineer materials' properties: New system of 'strain engineering' can change a material's optical, electrical, and thermal properties February 11th, 2019

Sound and light trapped by disorder February 8th, 2019

Announcements

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Tools

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected January 28th, 2019

Research partnerships

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Using artificial intelligence to engineer materials' properties: New system of 'strain engineering' can change a material's optical, electrical, and thermal properties February 11th, 2019

Fighting cancer: Scientists developed a theory of 'collective behavior' of nanoparticles: Experiments with supercomputers are led by Russian and Scottish scientists February 1st, 2019

Quantum nanoscience

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Sound and light trapped by disorder February 8th, 2019

TOCHA will take a topological approach to the next generation of electronic, photonic and phononic devices January 31st, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project