Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti Combines Integrated Optics and Holography In Novel Lens-Free, Augmented Reality Technology: Approach Eliminates the Need for Optical Systems and Combiners in AR; Will Be Presented at SPIE Photonics West 2019

Abstract:
Leti, an institute of CEA-Tech, has developed a novel retinal-projection concept for augmented reality (AR) uses based on a combination of integrated optics and holography. The lens-free optical system uses disruptive technologies to overcome the limitations of existing AR glasses, such as limited field-of-view and bulky optical systems.

CEA-Leti Combines Integrated Optics and Holography In Novel Lens-Free, Augmented Reality Technology: Approach Eliminates the Need for Optical Systems and Combiners in AR; Will Be Presented at SPIE Photonics West 2019

San Francisco, CA | Posted on February 6th, 2019

TVs and smartphones that project digital images emit light all around them, as quasi-isotropic sources. Because the images are projected generally over the air without directivity, many viewers see the same image. In typical AR glasses, images are transmitted close to the eyes (high directivity) by a microdisplay that includes an optical system and an optical combiner.



These microdisplays create a small near-to-eye image, which is transformed by the optical system, enabling the user to see it despite the short focusing distance. The combiner superimposes the digital image to the viewers’ vision of the real environment.



CEA-Leti’s innovation is a transparent retinal-projection device that projects various light waves to the eyes from a glass surface. Images are formed in the retina by the interference of light waves, which eliminates the need for optical systems or combiners. The light propagating in the air doesn’t form an image until it interferes precisely in the retina.



CEA-Leti presented its results Feb. 6 at SPIE Photonics West 2019 in a paper titled “Integrated Optical Network Design for a Retinal Projection Concept Based on Single-Mode Si3N4 Waveguides at 532 nm”.



The project focused on the design and numerical simulations of integrated Si3N4 optical components and the optical circuit at λ = 532 nm. It required building blocks for designing an optical integrated circuit capable of creating an array of emissive points. Starting with single-mode waveguides to efficiently transport light around the circuit, many other components were designed to manipulate light in different locations. Components for extracting the light, such as diffraction gratings, were also designed and simulated. The team minimized losses of different parts of the circuit, such as waveguide-bending areas, to increase energy efficiency of the system.



CEA-Leti’s integration of the device and its use of a holographic layer also allow creation of compact AR glasses with a larger field-of-view than existing systems, while the transparent retinal projection device allows ambient light to pass through the device for enhanced AR applications.



“Combining integrated optics and holography is a new research area for the scientific community developing display applications,” said Basile Meynard, a Ph.D. student and lead author of the paper. “It is also a way to imagine a display device that works more as a data transfer system than as an imaging system.”



The novel approach will require further development before it reaches the commercialization stage. In the medium to long term, the retinal projection concept is expected to support more compact and higher virtual-image quality applications similar to existing AR glasses.



This research project builds on CEA-Leti’s many years of development of micro-displays for near-to-eye displays, such as organic LED technologies (OLED) and liquid crystal devices (LCD). More recently, the institute has made significant strides in the field of inorganic LED display manufacturing.



“Our teams are continuously looking for potential disruptive technologies that could pave the way to new families of display devices down the road,” said Christophe Martinez, optical senior scientist and project leader in Leti. “The investigation on retinal displays is part of this exploration of future optical solutions.”

####

About Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare; Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 60 startups and is a member of the Carnot Institutes network. This year, the institute celebrates its 50th anniversary. Follow us on www.leti-cea.com and @CEA_Leti.

CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

For more information, please click here

Contacts:
Press Contact

Agency

+33 6 74 93 23 47

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

The interlayers help perovskite crystallisation for high-performance light-emitting diodes: Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes July 19th, 2019

Display technology/LEDs/SS Lighting/OLEDs

The interlayers help perovskite crystallisation for high-performance light-emitting diodes: Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes July 19th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Possible Futures

Limitation exposed in promising quantum computing material: Metallic surfaces no longer protected as topological insulators become thinner July 19th, 2019

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Announcements

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Events/Classes

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Arrowhead Pharmaceuticals to Present at Upcoming June 2019 Conferences June 2nd, 2019

ACS selects Naomi Halas to represent Americas at ChinaNano: Rice U. pioneer wins 2019 ACS Nano Lectureship Award for the Americas May 29th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project