Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Straightforward biosynthesis of functional bulk nanocomposites

The biosynthesis strategy of functional bulk nanocomposites. a, Scheme of the bioreactor. Aerosols of liquid nutrient and nanoscale building block suspensions were fed into the bioreactor with filtered compressed air, which was controlled by an automatic control system. b to d, Schematic illustration of the formation uniform BC-based nanocomposites with 0D nanoparticles (b), 1D nanotubes or nanowires (c), and 2D nanosheets (d). e, Photograph of a large-sized CNTs/BC pellicle with a volume of 800×800×8 mm3. f, Comparison of the tensile strength of the biosynthesized CNTs/BC nanocomposites with blended CNTs/BC nanocomposites. g, Electrical conductivity of the CNTs/BC films as a function of CNTs volume and weight fraction. Reprinted with permission of Oxford University Press.

CREDIT
©Science China Press
The biosynthesis strategy of functional bulk nanocomposites. a, Scheme of the bioreactor. Aerosols of liquid nutrient and nanoscale building block suspensions were fed into the bioreactor with filtered compressed air, which was controlled by an automatic control system. b to d, Schematic illustration of the formation uniform BC-based nanocomposites with 0D nanoparticles (b), 1D nanotubes or nanowires (c), and 2D nanosheets (d). e, Photograph of a large-sized CNTs/BC pellicle with a volume of 800×800×8 mm3. f, Comparison of the tensile strength of the biosynthesized CNTs/BC nanocomposites with blended CNTs/BC nanocomposites. g, Electrical conductivity of the CNTs/BC films as a function of CNTs volume and weight fraction. Reprinted with permission of Oxford University Press. CREDIT ©Science China Press

Abstract:
Interest in constructing bulk nanocomposite materials from biosourced and renewable nanoscale building blocks is growing. As a crystalline cellulosic polymer, cellulose is the most abundant biosourced and renewable polymeric material on earth, which can be extracted from plant or produced by bacteria. Bacterial cellulose (BC) nanofibrils possess a high tensile strength as high as steel and Kevlar and spontaneously formed a robust three-dimensional (3D) nanofibrous network, which makes it an ideal platform for design of functional bulk nanocomposites. BC and its nanocomposites have been widely used in many fields, including acoustic membrane, electron device, energy storage and catalyst. However, the conventional process for fabricating uniform BC nanocomposites involved the disintegration of 3D network structure for solution processing, which seriously impaired the mechanical performance of the nanocomposites. So, strategies without disintegration the 3D network structure are core important for constructing bulk BC based nanocomposites.

Straightforward biosynthesis of functional bulk nanocomposites

Beijing, China | Posted on February 5th, 2019

In response to this challenge, recently, researchers led by Professor Shu-Hong Yu from the University of Science and Technology of China (USTC) successfully developed a general and scalable biosynthesis strategy, which involves simultaneous growth of cellulose nanofibrils through microbial fermentation and co-deposition of various kinds of nanoscale building blocks (NBBs) through aerosol feeding on solid culture substrates (Fig. 1).

This method overcome the diffusion limitation of nanoscale units from the liquid medium to the upper surface layer of new-grown BC, through which, researchers successfully prepared a series of bulk nanocomposites of BC and nanoscale building blocks of different dimension, shapes, and sizes (Fig.1 b-d). Particularly, the method can be easily scaled up for potentially industrial applications by using large reactors and increasing the number of nozzles (Fig. 1c).

To demonstrate the merit and uniqueness of this method, researchers tuned the content of CNTs in a wide range from 1.5 wt% to 75 wt% by changing the concentration of CNTs suspensions. Note that conventional fabrication method for CNTs nanocomposites that requires the mixing of CNTs dispersions with polymer solutions is only applicable to prepare polymer nanocomposites with low CNTs (< 10 wt%), as it is extremely difficult to homogeneously disperse high-concentration CNTs in polymeric hosts. To further demonstrate the advantages of the biosynthesis strategy for preparing mechanically reinforced nanocomposites, CNTs/BC nanocomposite films were also prepared for comparison by blending of CNTs and disintegrated BC suspensions. Both the tensile strength and Young's modulus of the biosynthesized CNTs/BC nanocomposites were remarkably higher than that blended samples. As a result, the biosynthesized CNTs/BC nanocomposites achieve simultaneously an extremely high mechanical strength and electrical conductivity (Fig. 1g, h), which is of crucial importance for practical application.

This general and scalable biosynthesis strategy makes it possible for simultaneous growth of cellulose nanofibrils through microbial fermentation and co-deposition of various kinds of nanoscale building blocks through aerosol feeding on solid culture substrates. "By upgrading the state-of-the-art production line that produces pure bacterial cellulose pellicles, industrial-scale production of these bulk nanocomposite materials for practical applications can be expected in the near future.", the scientists forecast.

###

This research received funding from the National Natural Science Foundation of China, the Ministry of Science and Technology of China, and the Chinese Academy of Sciences.

####

For more information, please click here

Contacts:
Shu-Hong Yu

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Govt.-Legislation/Regulation/Funding/Policy

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Possible Futures

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chemical synthesis of nanotubes: Nanometer-sized tubes made from simple benzene molecules January 11th, 2019

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Ultrasensitive toxic gas detector October 31st, 2018

Discoveries

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Materials/Metamaterials

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Using artificial intelligence to engineer materials' properties: New system of 'strain engineering' can change a material's optical, electrical, and thermal properties February 11th, 2019

Sound and light trapped by disorder February 8th, 2019

Announcements

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Industrial

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project