Home > Press > Current generation via quantum proton transfer
![]() |
(A) proton tunneling through the barrier (quantum). (B) proton transfer via the transition state (classical); In the electrochemical system the relative contribution of the two mechanisms can be tuned by the applied potential. CREDIT NIMS |
Abstract:
NIMS and Hokkaido University jointly discovered that proton transfer in electrochemical reactions is governed by the quantum tunneling effect (QTE) under the specific conditions. In addition, they made a first ever observation of the transition between the quantum and classical regimes in electrochemical proton transfer by controlling potential. These results indicated the involvement of QTE in electrochemical proton transfer, a subject of a long-lasting debate, and may accelerate basic research leading to the development of highly efficient electrochemical energy conversion systems based on quantum mechanics.
Many of the state-of-the-art electronic devices and technologies that have realized present modern lives were established based on the fundamental principles of quantum mechanics. Quantum effects in electrochemical reactions in fuel cells and energy devices are, however, not well understood due to the complex movement of electrons and protons driven by electrochemical reaction processes on the surfaces of electrodes. As the result, application of quantum effects in electrochemical energy conversion is not as successful as the fields of electronics and spintronics, which surface and interfacial phenomena are equally critical in all of these fields. Assuming that electrochemical reactions are closely associated with quantum effects, it may be feasible to design highly efficient energy conversion mechanisms based on these effects: including QTE, and devices that take advantage of such mechanisms.
In this study, the NIMS-led research team focused on oxygen reduction reaction (ORR) mechanisms--the key reaction in fuel cells--using deuterium, an isotope of hydrogen having a different mass. As a result, the team confirmed proton tunneling through activation barriers within a small overpotential range. Furthermore, the team found that an increase in overpotential leads to electrochemical reaction pathways to change to proton transfer based on the semiclassical theory. Thus, this research team discovered the novel physical processes: the transition between the quantum and classical regimes in electrochemical reactions.
This research shows the involvement of QTE in proton transfer during the basic energy conversion processes. This discovery may facilitate investigations of microscopic mechanisms of electrochemical reactions which are not understood in detail. It may also stimulate the development of highly efficient electrochemical energy conversion technology with a working principle based on quantum mechanics, capable of operating beyond the classical regime.
###
This research project was conducted by a research team led by Ken Sakaushi (Senior Researcher, Center for Green Research on Energy and Environmental Materials [C4GR], NIMS), Andrey Lyalin (Special Researcher, C4GR, NIMS) and Tetsuya Taketsugu (Professor, Institute for Chemical Reaction Design and Discovery, Creative Research Institution, Hokkaido University). This project was supported by the JSPS Grant-in-Aid for Young Scientists (B) (Project No. 17K14546), the JSPS Grant-in-Aid for Scientific Research (C) (Project No. 15K05387) and the MEXT Program for Development of Environmental Technology using Nanotechnology.
This study was published in Physical Review Letters, a journal of the American Physical Society, on December 7, 2018.
####
For more information, please click here
Contacts:
Yasufumi Nakamichi
81-298-592-105
Contacts
(Regarding this research)
Ken Sakaushi
Senior Researcher
Center for Green Research on Energy and Environmental Materials
National Institute for Materials Science
Tel: +81-29-860-4945
Email: SAKAUSHI.Ken=nims.go.jp
(Please change "=" to
URL: https://samurai.nims.go.jp/profiles/sakaushi_ken
Tetsuya Taketsugu
Professor
Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, Hokkaido University;
Creative Research Institution; Institute for Chemical Reaction Design and Discovery
Tel: +81-11-706-3535
Email: take=sci.hokudai.ac.jp
(Please change "=" to
URL: https://wwwchem.sci.hokudai.ac.jp/~qc/
(For general inquiries)
Public Relations Office
National Institute for Materials Sciences
Tel: +81-29-859-2026
Fax: +81-29-859-2017
E-Mail: pressrelease=ml.nims.go.jp
(Please change "=" to
Public Relations Division
General Affairs and Planning Department, Hokkaido University
Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0808, Japan
Tel: +81-11-706-2610
Fax: +81-11-706-2092
Email:
Copyright © National Institute for Materials Science (NIMS)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Self-driving microrobots December 10th, 2019
Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019
'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019
Quantum Physics
Scientists tame Josephson vortices November 1st, 2019
Possible Futures
Self-driving microrobots December 10th, 2019
'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019
Artificial cells act more like the real thing December 6th, 2019
Announcements
Self-driving microrobots December 10th, 2019
Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019
'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Self-driving microrobots December 10th, 2019
'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019
Artificial cells act more like the real thing December 6th, 2019
Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019
Energy
The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide: Such bacteria may, in the future, contribute to new, carbon-efficient technologies November 27th, 2019
'Messy' production of perovskite material increases solar cell efficiency November 15th, 2019
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
New electrodes could increase efficiency of electric vehicles and aircraft November 22nd, 2019
Argonne collaborates to review current battery recycling processes for electric vehicles November 8th, 2019
Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019
Fuel Cells
Activity of fuel cell catalysts doubled: Modelling leads to the optimum size for platinum fuel cell catalysts July 5th, 2019
Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019
Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018
High-performance self-assembled catalyst for SOFC October 12th, 2018
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |