Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Shelley Claridge, an assistant professor at Purdue University, is leading research to improve electronic and energy conversion devices. (Image by Vincent Walter)

Shelley Claridge, an assistant professor at Purdue University, is leading research to improve electronic and energy conversion devices. (Image by Vincent Walter)
Shelley Claridge, an assistant professor at Purdue University, is leading research to improve electronic and energy conversion devices. (Image by Vincent Walter)

Abstract:
Tech wizards to tech novices may benefit from the ability to “grow” solar cells and advance electronics, computers and energy conversion devices.

Shelley Claridge, an assistant professor at Purdue University, is leading research to improve electronic and energy conversion devices. (Image by Vincent Walter)

West Lafayette, IN | Posted on January 24th, 2019

Inspired by the unique structural elements of animal and plant biological cell membranes, Purdue University researchers have scaled up the production of nanoscale electronics by replicating the living molecular precision and “growing” a circuit of solar cells for use on electronic surfaces.

The technology could address some of the greatest challenges in the production of nanoscale electronic and optoelectronic devices: scaling up to meet production demand of better, faster phones, computers and other electronic devices.

In cellular membranes, molecules with distinctive heads and tails stand together, tightly packed, like commuters in a subway at rush hour. For the most part, only the heads of the molecules are exposed to the environment around the cell, where they control interactions with other cells and with the world at large.

“Biology has developed a phenomenal set of building blocks for embedding chemical information in a surface,” said Shelley Claridge, an assistant professor of chemistry and biomedical engineering at Purdue, who leads the group. “We hope to translate what we have learned from biological design to address current scaling challenges in industrial fabrication of nanoscale electronic and optoelectronic devices.”

One of those scaling challenges relates to controlling surface structure at scales below 10 nanometers — a need common to modern devices for computing and energy conversion.

Claridge’s research group has found that it is possible to design surfaces in which phospholipids sit, rather than stand on the surface, exposing both heads and tails of each molecule. Because the cell membrane is remarkably thin, just a few atoms across, this creates striped chemical patterns with scales between 5 and 10 nm, a scale very relevant to device design.

One unique discovery by the team reveals that these striped, ‘sitting’ monolayers of phospholipids influence the shape and alignment of liquid nanodroplets placed on the surfaces. Such directional wetting at the molecular scale can localize solution-phase interactions with 2D materials, potentially facilitating deposition of constituents for graphene-based devices.

The Purdue Office of Technology Commercialization has filed multiple patents on the technology. OTC are looking for partners for continued research and to take the technology to market.

The work aligns with Purdue's Giant Leaps celebration, celebrating the global advancements in sustainability as part of Purdue’s 150th anniversary. This is one of the four themes of the yearlong celebration’s Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

####

About Purdue University
About Purdue Office of Technology Commercialization

The Purdue Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities. The office is managed by the Purdue Research Foundation, which received the 2016 Innovation and Economic Prosperity Universities Award for Innovation from the Association of Public and Land-grant Universities. For more information about funding and investment opportunities in startups based on a Purdue innovation, contact the Purdue Foundry at For more information on licensing a Purdue innovation, contact the Office of Technology Commercialization at . The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University.

For more information, please click here

Contacts:
Writer: Chris Adam, 765-588-3341,

Source: Shelley Claridge,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Graphene/ Graphite

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

2 Dimensional Materials

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Possible Futures

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Chip Technology

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Toppan Photomasks and GLOBALFOUNDRIES Enter into Multi-Year Supply Agreement August 15th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

New synthesis method opens up possibilities for organic electronics August 7th, 2019

Optical computing/Photonic computing

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

RIT awarded NSF funding to conceptualize Quantum Photonic Institute: RIT will develop plan for open-access Quantum Foundry for quantum photonic circuits August 7th, 2019

Oddball edge wins nanotube faceoff: Rice U. theory shows peculiar 'Janus' interface a common mechanism in carbon nanotube growth July 29th, 2019

Technologies for the Sixth Generation Cellular Network: Ultra-rapid Electro-optical Modulators Convert Terahertz into Optical Data Signals - Publication in Nature Photonics July 25th, 2019

Discoveries

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Announcements

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Patents/IP/Tech Transfer/Licensing

Sheaths drive powerful new artificial muscles July 11th, 2019

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Energy

New synthesis method opens up possibilities for organic electronics August 7th, 2019

Physicists make graphene discovery that could help develop superconductors: Rutgers-led research could reduce energy use, improve electronic devices August 1st, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit July 5th, 2019

Nanobiotechnology

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Nanoparticles’ movement reveals whether they can successfully target cancer: Targeting nanoparticles rotate faster and move across larger areas August 9th, 2019

Photonics/Optics/Lasers

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

RIT awarded NSF funding to conceptualize Quantum Photonic Institute: RIT will develop plan for open-access Quantum Foundry for quantum photonic circuits August 7th, 2019

Oddball edge wins nanotube faceoff: Rice U. theory shows peculiar 'Janus' interface a common mechanism in carbon nanotube growth July 29th, 2019

Technologies for the Sixth Generation Cellular Network: Ultra-rapid Electro-optical Modulators Convert Terahertz into Optical Data Signals - Publication in Nature Photonics July 25th, 2019

Solar/Photovoltaic

New synthesis method opens up possibilities for organic electronics August 7th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit July 5th, 2019

Black (nano)gold combat climate change July 5th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project