Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure

MIT researchers have devised a technique that “reverse engineers” complex 3-D computer-aided design (CAD) models — breaking them down into the many individual shapes they’re made of — to make them far easier for users to customize for manufacturing and 3-D printing applications.

Courtesy of the researchers
MIT researchers have devised a technique that “reverse engineers” complex 3-D computer-aided design (CAD) models — breaking them down into the many individual shapes they’re made of — to make them far easier for users to customize for manufacturing and 3-D printing applications. Courtesy of the researchers

Abstract:
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure

Cambridge, MA | Posted on January 4th, 2019

Until now, designing such structures has required technical expertise that puts the process out of reach of most people. Using the new program, anyone can create a DNA nanostructure of any shape, for applications in cell biology, photonics, and quantum sensing and computing, among many others.

"What this work does is allow anyone to draw literally any 2-D shape and convert it into DNA origami automatically," says Mark Bathe, an associate professor of biological engineering at MIT and the senior author of the study.

The researchers published their findings in the Jan. 4 issue of Science Advances, and the program, called PERDIX, is available online. The lead authors of the paper are Hyungmin Jun, an MIT postdoc, and Fei Zhang, an assistant research professor at Arizona State University. Other authors are MIT research associate Tyson Shepherd, recent MIT PhD recipient Sakul Ratanalert, ASU assistant research scientist Xiaodong Qi, and ASU professor Hao Yan.

Automated design

DNA origami, the science of folding DNA into tiny structures, originated in the early 1980s, when Ned Seeman of New York University proposed taking advantage of DNA's base-pairing abilities to create arbitrary molecular arrangements. In 2006, Paul Rothemund of Caltech created the first scaffolded, two-dimensional DNA structures, by weaving a long single strand of DNA (the scaffold) through the shape such that DNA strands known as "staples" would hybridize to it to help the overall structure maintain its shape.

Others later used a similar approach to create complex three-dimensional DNA structures. However, all of these efforts required complicated manual design to route the scaffold through the entire structure and to generate the sequences of the staple strands. In 2016, Bathe and his colleagues developed a way to automate the process of generating a 3-D polyhedral DNA structure, and in this new study, they set out to automate the design of arbitrary 2-D DNA structures.

To achieve that, they developed a new mathematical approach to the process of routing the single-stranded scaffold through the entire structure to form the correct shape. The resulting computer program can take any free-form drawing and translate it into the DNA sequence to create that shape and into the sequences for the staple strands.

The shape can be sketched in any computer drawing program and then converted into a computer-aided design (CAD) file, which is fed into the DNA design program. "Once you have that file, everything's automatic, much like printing, but here the ink is DNA," Bathe says.

After the sequences are generated, the user can order them to easily fabricate the specified shape. In this paper, the researchers created shapes in which all of the edges consist of two duplexes of DNA, but they also have a working program that can utilize six duplexes per edge, which are more rigid. The corresponding software tool for 3-D polyhedra, called TALOS, is available online and will be published soon in the journal ACS Nano. The shapes, which range from 10 to 100 nanometers in size, can remain stable for weeks or months, suspended in a buffer solution.

"The fact that we can design and fabricate these in a very simple way helps to solve a major bottleneck in our field," Bathe says. "Now the field can transition toward much broader groups of people in industry and academia being able to functionalize DNA structures and deploy them for diverse applications."

Nanoscale patterns

Because the researchers have such precise control over the structure of the synthetic DNA particles, they can attach a variety of other molecules at specific locations. This could be useful for templating antigens in nanoscale patterns to shed light on how immune cells recognize and are activated by specific arrangements of antigens found on viruses and bacteria.

"How nanoscale patterns of antigens are recognized by immune cells is a very poorly understood area of immunology," Bathe says. "Attaching antigens to structured DNA surfaces to display them in organized patterns is a powerful way to probe that biology."

Another key application is designing light-harvesting circuits that mimic the photosynthetic complexes found in plants. To achieve that, the researchers are attaching light-sensitive dyes known as chromophores to DNA scaffolds. In addition to harvesting light, such circuits could also be used to perform quantum sensing and rudimentary computations. If successful, these would be the first quantum computing circuits that can operate at room temperature, Bathe says.

###

Bathe and three other MIT faculty members -- Gabriela Schlau-Cohen, Adam Willard, and Dirk Englund -- recently received a National Science Foundation grant to pursue this quantum sensing and computing project.

Other possible applications for the DNA structures include using them to help organize macromolecular protein assemblies found in cells, so that they can be more easily imaged with high-resolution cryo-electron-microscopy. MIT's new MIT.nano facility has two such microscopes, which can be used to reveal the fine details of tiny structures.

The research was funded by the National Science Foundation, the Office of Naval Research, the Army Research Office, and the National Institute of Allergy and Infectious Disease.

####

For more information, please click here

Contacts:
Abby Abazorius

617-253-2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Imaging

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

3D & 4D printing/Additive-manufacturing

New composite advances lignin as a renewable 3D printing material December 28th, 2018

Nanoscribe Presents Successor Model Photonic Professional GT2 for High-Resolution 3D Microfabrication: The first ever production of structures in millimeter size with micrometer precision December 4th, 2018

Researchers create new 'smart' material with potential biomedical, environmental uses November 23rd, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Software

Park Systems Announces Grand Opening Ceremony for Their New Office in Beijing China November 19th, 2018

Leti Middleware Will Be Core of Fog Platform for Decentralized Cloud-to-Edge AI: DECENTER Project to Integrate IoT, AI, the Cloud, Edge, Fog Computing and Smart Contracts Tied Together with Secure Blockchain in ‘New Ecosystem’ for On-Demand Edge Computing October 26th, 2018

AIM Photonics is Unveiling Support for Datacom and Telecom Optical Bands with its New Silicon Photonics Process Design Kit (PDK): New Analog Photonics and SUNY PDK Enables Partnering Companies to Gain World-Class Technological Capabilities in O+C+L optical bands October 5th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Possible Futures

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Nanomedicine

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

Computer-designed vaccine elicits potent antibodies against RSV: The nanoparticle platform for this respiratory syncytial virus study will be applied to vaccine research on flu, HIV, and more; Seattle startup Icosavax will advance related clinical trials March 8th, 2019

Quantum Computing

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

Researchers move closer to practical photonic quantum computing: New method fills critical need to measure large-scale quantum correlation of single photons February 28th, 2019

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Discoveries

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Announcements

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Tools

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Nanometrics Announces $80 Million Share Repurchase Program March 14th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Military

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Nanobiotechnology

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

Computer-designed vaccine elicits potent antibodies against RSV: The nanoparticle platform for this respiratory syncytial virus study will be applied to vaccine research on flu, HIV, and more; Seattle startup Icosavax will advance related clinical trials March 8th, 2019

Nanotechnology Gives Mice Night Vision—Are Humans Next? March 2nd, 2019

Research partnerships

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project