Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Superfluidity: what is it and why does it matter?

Illinois physics professor and Nobel Laureate Anthony Leggett talks about the 1938 discovery of superfluidity and its significance to low-temperature physics.

Photo by L. Brian Stauffer
Illinois physics professor and Nobel Laureate Anthony Leggett talks about the 1938 discovery of superfluidity and its significance to low-temperature physics. Photo by L. Brian Stauffer

Abstract:
2018 marks the 80th anniversary of the landmark physics discovery of superfluidity. News Bureau physical sciences editor Lois Yoksoulian asked University of Illinois physics professor and 2003 Nobel Prize winner Anthony Leggett about the significance of the historic finding.

Superfluidity: what is it and why does it matter?

Champaign, IL | Posted on December 20th, 2018

What is superfluidity?

The most obvious definition of superfluidity is the ability of a liquid to flow through narrow channels without apparent friction. However, this is actually only one of a number of interesting properties. For example, if we place a liquid into a bucket and slowly rotate it while cooled into the superfluid phase, the liquid, which initially rotates with the bucket, will appear to come to rest. We call this phenomenon the Hess-Fairbank effect.

Today, superfluidity is something that we can directly observe in helium isotopes and in ultra-cold atomic gases. It is conjectured to occur in extraterrestrial systems, such as neutron stars, and there is circumstantial evidence supporting its existence in other terrestrial systems, such as excitons, which are bound electron-hole pairs found in semiconductors.

How was superfluidity discovered?

Helium-4 was liquefied in 1908, but it was only in 1936 and 1937 that scientists recognized that below the temperature of 2.17 degrees absolute – which we now call the lambda point – it possessed properties different from any other substance known at the time. In particular, the thermal conductivity of the low-temperature phase, now known as He-II, is very large, which suggests a convection mechanism, but with anomalously low viscosity.

In 1938, Pyotr Kapitza in Moscow and John Allen and Don Misener at the University of Cambridge simultaneously performed a direct measurement of the behavior of the viscosity of the helium contained in a thin tube as a function of temperature. Both groups found a drop in He-II, which appeared discontinuously at the lambda point. On the basis of the analogy with superconductivity, Kapitza coined the term superfluidity for this behavior.

What is the relationship between superfluidity and superconductivity?

According to our modern understanding, superconductivity is nothing more than superfluidity occurring in an electrically charged system. Just as a superfluid liquid can flow forever down a narrow capillary without apparent friction, so can a current, once started in a superconducting ring – or at least for a time much longer than the age of the Universe!

The analog of the Hess-Fairbank effect mentioned earlier is a bit less intuitive. The direct analog is that when a magnetic field is applied to the surface of a metal, the normal, non-superconducting state has little effect. However, when the metal is in the superconducting state, it will induce an electric current, or diamagnetism. In a thin ring, this would be the end of the story, but in a bulk sample this current induces its own magnetic field in a direction opposite to the external one, and eventually the latter is screened out of the metal completely. This is the so-called Meissner effect, and leads to spectacular phenomena such as superconducting levitation.

What types of advancements have been made as a result of understanding superfluidity?

The direct uses of superfluid helium are actually rather few. Because of its extremely high thermal conductivity, the superfluid phase of helium-4 is an excellent coolant for high-field magnets, and both isotopes have some applications as detectors of exotic particles. While there are other unique indirect applications of superfluidity, they are most useful in the development of theory and understanding high-temperature superconductivity.

####

For more information, please click here

Contacts:
LOIS YOKSOULIAN
PHYSICAL SCIENCES EDITOR
217-244-2788


Anthony Leggett

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Physics

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Spontaneous synchronisation achieved at the nanoscale July 4th, 2019

New study shows nanoscale pendulum coupling July 3rd, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Superconductivity

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Perfect diamagnetism observation of high-temperature superconductivity in compressed H2S June 14th, 2019

Possible Futures

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Engineers revolutionize molecular microscopy: Single molecules measure electrical potentials July 12th, 2019

'Tsunami' on a silicon chip: a world first for light waves: Sydney-Singapore team manipulates soliton photonic waves on a silicon chip July 5th, 2019

Discoveries

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Announcements

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Aerospace/Space

Better microring sensors for optical applications May 10th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

VP Pence Announces Humans on Moon by 2024 April 2nd, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Sheaths drive powerful new artificial muscles July 11th, 2019

Nanotechnology pioneer Chad Mirkin wins Kabiller Prize in Nanoscience and Nanomedicine: Molly Stevens of Imperial College London receives Kabiller Young Investigator Award July 11th, 2019

'Tsunami' on a silicon chip: a world first for light waves: Sydney-Singapore team manipulates soliton photonic waves on a silicon chip July 5th, 2019

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project