Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions.

Image of TCNQ-CH2CN molecule on a corrugated graphene layer (left) and representation of the calculated geometries (right). Adapted from Navarro et al. Sci. Adv. 2018.
Image of TCNQ-CH2CN molecule on a corrugated graphene layer (left) and representation of the calculated geometries (right). Adapted from Navarro et al. Sci. Adv. 2018.

Abstract:
Graphene monolayers can be epitaxially grown on many single-crystal metal surfaces under ultra-high vacuum. On one side, these monolayers protect highly reactive metallic surfaces from contaminants, but on the other side, the piling of the layers as graphitic carbon poisons the activity of transition metal catalysts. The inertness of the graphite and the physical blockage of the active sites prevents chemical reactions occurring on the metal surface.

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions.

Madrid, Spain | Posted on December 14th, 2018

Researchers led by Fernando Martín, Emilio Pérez and Amadeo Vázquez de Parga (IMDEA Nanociencia and Universidad Autónoma de Madrid) have demonstrated that nanostructured graphene monolayers on a metal surface do promote a chemical reaction that would hardly take place under noncatalyzed conditions. A crystal of ruthenium, Ru(0001), has been covered with an epitaxially grown continuous graphene layer. Because of the difference in lattice parameters, a new superperiodicity appears on the graphene layer and modulates its electronic properties. Taking advantage of the modulation, the surface has been functionalized with cyanomethylene groups (-CH2CN), covalently bonded to the center of the hexagonal close-packed areas in the Moiré unit cell, and doped with TCNQ (7,7,8,8-tetracyano-p-quinodimethane). TCNQ is an electron acceptor molecule used to p-dope graphene films. When deposited on the graphene surface, this molecule is absorbed on a bridge position between two ripples. Here, it is worth to notice the important role of the surface and of the graphene layer in catalyzing the reaction of TCNQ and -CH2CN. The reaction of TCNQ with CH3CN (the pristine reactants are in gas phase) plus the loss of a hydrogen atom is very unlikely because of the high energy barrier (about 5 eV). The presence of the graphene layer reduces this energy barrier by a factor of 5, thus favoring the formation of the products.

The nanostructured graphene promotes the reaction in a threefold way: first, holds the -CH2CN in place; second, allows for an efficient charge transfer from the ruthenium; and third, prevents the absorption of TCNQ by ruthenium allowing the molecule to diffuse on the surface. “A similar clean reaction on pristine ruthenium is not possible, because the reactive character of ruthenium leads to the absorption of CH3CN and hinders the mobility of TCNQ molecules once absorbed on the surface” Amadeo says. The results confirm the catalytic character of graphene in this reaction. “Such a selectivity would be difficult to obtain by using other forms of carbon” Emilio confirms.

Further, the TCNQ molecules have been injected with electrons using the scanning tunneling microscope (STM). This individual manipulation of the molecules induces a C-C bond breaking, thus leading to the recovery of the initial reactants: CH2CN-graphene and TCNQ. The process is reversible and reproducible at a single-molecule level. As the researchers have observed a Kondo resonance, the reversibility of the process can be thought as a reversible magnetic switch controlled by a chemical reaction.

Fernando Martín, Emilio Pérez and Amadeo Vázquez de Parga are researchers at the Madrid’s Institute of Advanced Studies IMDEA Nanociencia. The work is a collaboration between IMDEA Nanociencia and Universidad Autónoma de Madrid, and the Condensed Matter Physics Center IFIMAC. The research has been co-funded by the Spanish Ministry of Economy and Competitiveness, the Government of the Region of Madrid and the European Research Council.

Article:

J. Navarro, M. Pisarra, B. Nieto-Ortega, J. Villalva, C. G. Ayani, C. Díaz, F. Calleja, R. Miranda, F. Martín, E. M. Pérez, A. L. Vázquez de Parga. Graphene catalyzes the reversible formation of a C–C bond between two molecules. Sci. Adv. 4, eaau9366 (2018).

####

For more information, please click here

Contacts:
Prof. Emilio Pérez
emilio.perez [at] imdea.org
http://www.nanociencia.imdea.org/home-en/people/item/emilio-perez-alvarez
Twitter: @emilioperezlab

Prof. Amadeo L. Vázquez de Parga
al.vazquezdeparga [at] uam.es
http://nanociencia.imdea.org/nanoscale-imaging-of-2d-materials/group-home

Comunicación científica IMDEA Nanociencia
divulgacion.nanociencia [at] imdea.org
+34 91 299 87 12
Twitter: @IMDEA_nano,
Facebook: @IMDEANanociencia

Copyright © IMDEA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

Graphene/ Graphite

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Magnetism

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Possible Futures

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

Discoveries

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

Materials/Metamaterials

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Announcements

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Research partnerships

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Chirality in 'real-time' January 14th, 2019

Ultra-sensitive sensor with gold nanoparticle array January 9th, 2019

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure January 4th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project