Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices

Boston College researcher Kun Jiang, PhD, and Professor of Physics Ziqiang Wang. The theoretical physicists have been studying novel quantum electronic states resulting from the interplay of electron-electron interaction, geometrical frustration, and topological band structures.

CREDIT
Lee Pellegrini/Boston College
Boston College researcher Kun Jiang, PhD, and Professor of Physics Ziqiang Wang. The theoretical physicists have been studying novel quantum electronic states resulting from the interplay of electron-electron interaction, geometrical frustration, and topological band structures. CREDIT Lee Pellegrini/Boston College

Abstract:
Like so many targets of scientific inquiry, the class of material referred to as the kagome magnet has proven to be a source of both frustration and amazement. Further revealing the quantum properties of the kagome magnet is seen as one of the primary challenges in fundamental physics - to both theorists and experimentalists.

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices

Chestnut Hill, MA | Posted on December 9th, 2018

An unusual underlying geometry of the atomic arrangement is central to the value of these materials. Kagome lattices are described as intersecting webs of "corner-sharing triangles" and are prized for the unique behavior of the traversing electrons, fertile ground for the study of quantum electronic states described as frustrated, correlated and topological.

A recent study by an international group of researchers, published in the journal Nature, found the kagome ferromagnet Fe3Sn2 exhibits an electronic state that couples unusually strongly to an applied magnetic field that can be rotated to point in any direction of a 3-dimensional space, revealing in quantum scale a "giant" magnetization-driven electronic energy shift taking place within the material.

That energy shift sheds new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices, where magnetic and electronic structures are entangled and produce unusual - often previously unknown - spin-orbit activity, said Boston College Professor of Physics Ziqiang Wang, a co-author of the report, titled "Giant and anisotropic spin-orbit tunability in a strongly correlated kagome magnet."

"We found out two things. The first one is that the electronic state of Fe3Sn2 is nematic, a state that spontaneously breaks the rotation symmetry. The electrons behave as a liquid crystal inside this magnet, presumably due to the strong electron-electron interaction," said Wang. "The second thing we found is you can manipulate and make big changes to the electron energy structure through tuning the magnetic structure by applying a magnetic field."

Wang, a theoretical physicist, and graduate student Kun Jiang, PhD, who have been studying novel quantum electronic states resulting from the interplay of electron-electron interaction, geometrical frustration, and topological band structures, joined experimentalist colleagues who first noted the unusual electronic activity as they studied the material using scanning tunneling microscopy.

The team - which included researchers from BC, Princeton University, Chinese Academy of Sciences, Renmin University, and Peking University - used STM and vector-magnetic-field tools to identify the spin-orbit coupled electronic properties of the kagome ferromagnet and explored the exotic phenomena within it, while performing modeling and calculations to provide theoretical interpretation and understanding of the observed phenomena.

"What our colleagues found is that by changing the direction of the magnetic field, they saw changes in the electronic states that are anomalously large," said Wang. "The shifts of the bands - there are band gaps, forbidden regions in quantum mechanics where electrons cannot reside - those regions can be tuned enormously by the applied magnetic field."

The "band shift" is a change in electronic band structure, said Wang. It expands and narrows the band gap depending on the magnetic field directions. The kagome ferromagnet showed a shift approximately 150 times larger than ordinary materials.

Probing the interference patterns of the electron's quantum mechanical wave functions revealed consistent spontaneous nematicity -- an indication of important electron correlation that causes the rotation symmetry-breaking of the electronic state in the material.

These spin-driven giant electronic responses indicated the possibility of an underlying correlated magnetic topological phase, the researchers reported. The tunability of the kagome magnet revealed a strong interplay between an externally applied magnetic field and nematicity, providing new ways of controlling spin-orbit properties and exploring emergent phenomena in topological or quantum materials, the team wrote.

The giant magnetic field tunability of the electrical properties may one day lead to potential applications in electronic devices such as memory and information storage and sensing technologies, said Wang.

"What's exciting in these results is the potential of realizing something useful," said Wang. "This is coming from very fundamental physics, but it may one day connect to applications. We don't understand everything, but we now know this is a material that contains all these important ingredients."

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE

Related News Press

News and information

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

Physics

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Physicists uncover new competing state of matter in superconducting material January 4th, 2019

Quantum Physics

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Magnetism

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Govt.-Legislation/Regulation/Funding/Policy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Possible Futures

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

Chip Technology

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

Memory Technology

CEA-Leti’s RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

Sensors

Ultra-sensitive sensor with gold nanoparticle array January 9th, 2019

Study on low noise, high-performance transistors may bring innovations in electronics December 28th, 2018

Emerging trends in advanced nano-materials based electrochemical geno-sensors December 28th, 2018

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Discoveries

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

Announcements

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project