Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance

Drs. Esrafilzadeh and Jalili working on 3D-printed graphene mesh in the lab.

CREDIT
RMIT University
Drs. Esrafilzadeh and Jalili working on 3D-printed graphene mesh in the lab. CREDIT RMIT University

Abstract:
New research reveals why the "supermaterial" graphene has not transformed electronics as promised, and shows how to double its performance and finally harness its extraordinary potential.

Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance

Melbourne, Australia | Posted on November 30th, 2018

Graphene is the strongest material ever tested. It's also flexible, transparent and conducts heat and electricity 10 times better than copper.

After graphene research won the Nobel Prize for Physics in 2010 it was hailed as a transformative material for flexible electronics, more powerful computer chips and solar panels, water filters and bio-sensors. But performance has been mixed and industry adoption slow.

Now a study published in Nature Communications identifies silicon contamination as the root cause of disappointing results and details how to produce higher performing, pure graphene.

The RMIT University team led by Dr Dorna Esrafilzadeh and Dr Rouhollah Ali Jalili inspected commercially-available graphene samples, atom by atom, with a state-of-art scanning transition electron microscope.

"We found high levels of silicon contamination in commercially available graphene, with massive impacts on the material's performance," Esrafilzadeh said.

Testing showed that silicon present in natural graphite, the raw material used to make graphene, was not being fully removed when processed.

"We believe this contamination is at the heart of many seemingly inconsistent reports on the properties of graphene and perhaps many other atomically thin two-dimensional (2D) materials ," Esrafilzadeh said.

"Graphene was billed as being transformative, but has so far failed to make a significant commercial impact, as have some similar 2D nanomaterials. Now we know why it has not been performing as promised, and what needs to be done to harness its full potential."

The testing not only identified these impurities but also demonstrated the major influence they have on performance, with contaminated material performing up to 50% worse when tested as electrodes.

"This level of inconsistency may have stymied the emergence of major industry applications for graphene-based systems. But it's also preventing the development of regulatory frameworks governing the implementation of such layered nanomaterials, which are destined to become the backbone of next-generation devices," she said.

The two-dimensional property of graphene sheeting, which is only one atom thick, makes it ideal for electricity storage and new sensor technologies that rely on high surface area.

This study reveals how that 2D property is also graphene's Achilles' heel, by making it so vulnerable to surface contamination, and underscores how important high purity graphite is for the production of more pure graphene.

Using pure graphene, researchers demonstrated how the material performed extraordinarily well when used to build a supercapacitator, a kind of super battery.

When tested, the device's capacity to hold electrical charge was massive. In fact, it was the biggest capacity so far recorded for graphene and within sight of the material's predicted theoretical capacity.

In collaboration with RMIT's Centre for Advanced Materials and Industrial Chemistry, the team then used pure graphene to build a versatile humidity sensor with the highest sensitivity and the lowest limit of detection ever reported.

These findings constitute a vital milestone for the complete understanding of atomically thin two-dimensional materials and their successful integration within high performance commercial devices.

"We hope this research will help to unlock the exciting potential of these materials."

####

For more information, please click here

Contacts:
Michael Quin

61-499-515-417

Copyright © Rmit University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article "Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance" is published in Nature Communications: DOI: 10.1038/s41467-018-07396-3:

Related News Press

News and information

Big energy savings for tiny machines May 24th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Graphene/ Graphite

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

No ink needed for these graphene artworks: Artist employs Rice University lab's laser-induced graphene as medium for ultramodern art May 3rd, 2019

Ensure Safety and Keep Costs Down: Solving Industrial Challenges with Nanotube-Containing Polyurethane Shafts April 26th, 2019

Flexible Electronics

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Possible Futures

Big energy savings for tiny machines May 24th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Chip Technology

Big energy savings for tiny machines May 24th, 2019

Rice U. lab grows stable, ultrathin magnets: Rare iron oxide could be combined with 2D materials for electronic, spintronic devices May 24th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices May 13th, 2019

Sensors

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Better microring sensors for optical applications May 10th, 2019

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

Discoveries

Big energy savings for tiny machines May 24th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Announcements

Big energy savings for tiny machines May 24th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Data science helps engineers discover new materials for solar cells and LEDs May 24th, 2019

Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals: Researchers demonstrate that perovskite crystals and quantum dots working together can increase stability of solar materials May 24th, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Water

Exploring New Ways to Control Thermal Radiation April 29th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Defects help nanomaterial soak up more pollutant in less time: Rice U. researchers find new way to remove PFOS from industrial wastewater March 13th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Solar/Photovoltaic

Data science helps engineers discover new materials for solar cells and LEDs May 24th, 2019

Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals: Researchers demonstrate that perovskite crystals and quantum dots working together can increase stability of solar materials May 24th, 2019

Big energy savings for tiny machines May 24th, 2019

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project