Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > WSU researchers develop new technique to understand biology at the nanoscale

Prashanta Dutta, professor in the School of Mechanical and Materials Engineering
Prashanta Dutta, professor in the School of Mechanical and Materials Engineering

Abstract:
Washington State University researchers for the first time have shown that they can use electrical fields to gain valuable information about the tiny, floating vesicles that move around in animals and plants and are critically important to many biological functions.

WSU researchers develop new technique to understand biology at the nanoscale

Pullman, WA | Posted on November 7th, 2018

The new technique could make it easier and less expensive for researchers to gain important information about many biological processes, from understanding the spread of infection in people to improving drug delivery techniques.



Led by graduate student Adnan Morshed and Prashanta Dutta, professor in the School of Mechanical and Materials Engineering ( https://mme.wsu.edu ), the work was published in Physical Review Fluids ( https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.3.103702 ) and funded by the National Institute of General Medical Sciences of the National Institutes of Health.



At the basis of much of biology are cells and, at even smaller scales, cell-like bubbles that float around in liquid doing critically important jobs. So, for instance, neurons communicate in our brain through vesicles that carry information and chemicals from one neuron to the next. The HIV virus is another tiny vesicle. Over time, the vesicle carrying HIV changes and becomes stiffer, which indicates that the virus is becoming more infectious.



But studying the properties of these tiny and critically important cellular sacs that travel through organisms in fluids has been difficult, especially when researchers get to the smallest floaters that are 40-100 nanometers in size. To study biological processes at tiny scales, the researchers use atomic force microscopes, which require removing the vesicles from their natural floating homes. The process is expensive, cumbersome and slow. Furthermore, by taking them out of their natural settings, the biological materials also don’t necessarily exhibit their natural behavior, said Dutta.



https://youtu.be/p8-lXc8yRaY



The WSU research team has developed a system that uses a microfluidic-based system and electric fields to better understand vesicles. Similar to a grocery store checker who identifies products as they are passed over a scanner, the researchers apply electrical fields in a liquid as the vesicle passes through a narrow pore. Because of the electric field, the vesicle moves, deforms or reacts differently depending on its chemical make-up. In the case of the HIV vesicles, for instance, the researchers should be able to see the electric field affect the stiffer, more infectious vesicle in a different way than a more flexible, less infectious vesicle. For drug delivery, the system could differentiate a vesicle that contains more or less of a drug — even if the two cells might look identical under a microscope.



“Our system is low-cost and high throughput,” said Dutta. “We can really scan hundreds of samples at a time.”



He added that they can change the speed of the process to allow researchers to more carefully observe property changes.



The researchers developed a model and tested it with synthetic liposomes, tiny sacs that are used for targeted drug delivery. They hope to begin testing the process soon with more realistic biological materials.



See WSU News, https://news.wsu.edu/2018/11/06/new-technique-developed-understand-nanoscale-biology

####

For more information, please click here

Contacts:
Prashanta Dutta, professor, School of Mechanical and Materials Engineering, 509-335-7989,

Tina Hilding, communications director, Voiland College of Engineering and Architecture, 509-335-5095,

Copyright © Washington State Universit

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Boundaries no barrier for thermoelectricity: Rice researchers find potentially useful electrical phenomenon in gold nanowires September 8th, 2020

CEA-Leti X-Ray Photon-Counting Detector Modules Target Improved Medical Diagnoses: Clinical Trials Show Higher Spatial Resolution, Less Noise, Fewer Artifacts, And Color Capabilities in Patients’ Images September 3rd, 2020

News and information

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Cancer

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment September 11th, 2020

Silver-plated gold nanostars detect early cancer biomarkers: New optical sensing platform can detect genomic cancer biomarkers directly in patient tissues July 24th, 2020

Wearable patch may provide new treatment option for skin cancer June 18th, 2020

Synthetic Biology

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions August 11th, 2020

Machine learning reveals recipe for building artificial proteins July 24th, 2020

Videos/Movies

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Oxford Instruments Asylum Research Jupiter XR Large-Sample AFM Now Includes New Ergo Software Interface for Even Greater Productivity June 18th, 2020

Microfluidics/Nanofluidics

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Possible Futures

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Nanomedicine

Arrowhead ARO-AAT Phase 2 Interim Results in Patients with Alpha-1 Liver Disease Demonstrate Improvements in Key Parameters after Six Months of Treatment September 16th, 2020

Gentle probes could enable massive brain data collection: National Institutes of Health backing Rice’s Chong Xie to refine flexible nanoelectronics thread September 14th, 2020

Understanding electron transport in graphene nanoribbons: New understanding of the electrical properties of graphene nanoribbons (GRBs), when bounded with aromatic molecules, could have significant benefits in the development of chemosensors and personalized medicine September 11th, 2020

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment September 11th, 2020

Discoveries

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Announcements

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Nanobiotechnology

Arrowhead ARO-AAT Phase 2 Interim Results in Patients with Alpha-1 Liver Disease Demonstrate Improvements in Key Parameters after Six Months of Treatment September 16th, 2020

Gentle probes could enable massive brain data collection: National Institutes of Health backing Rice’s Chong Xie to refine flexible nanoelectronics thread September 14th, 2020

Understanding electron transport in graphene nanoribbons: New understanding of the electrical properties of graphene nanoribbons (GRBs), when bounded with aromatic molecules, could have significant benefits in the development of chemosensors and personalized medicine September 11th, 2020

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment September 11th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project