Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > WSU researchers develop new technique to understand biology at the nanoscale

Prashanta Dutta, professor in the School of Mechanical and Materials Engineering
Prashanta Dutta, professor in the School of Mechanical and Materials Engineering

Abstract:
Washington State University researchers for the first time have shown that they can use electrical fields to gain valuable information about the tiny, floating vesicles that move around in animals and plants and are critically important to many biological functions.

WSU researchers develop new technique to understand biology at the nanoscale

Pullman, WA | Posted on November 7th, 2018

The new technique could make it easier and less expensive for researchers to gain important information about many biological processes, from understanding the spread of infection in people to improving drug delivery techniques.



Led by graduate student Adnan Morshed and Prashanta Dutta, professor in the School of Mechanical and Materials Engineering ( https://mme.wsu.edu ), the work was published in Physical Review Fluids ( https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.3.103702 ) and funded by the National Institute of General Medical Sciences of the National Institutes of Health.



At the basis of much of biology are cells and, at even smaller scales, cell-like bubbles that float around in liquid doing critically important jobs. So, for instance, neurons communicate in our brain through vesicles that carry information and chemicals from one neuron to the next. The HIV virus is another tiny vesicle. Over time, the vesicle carrying HIV changes and becomes stiffer, which indicates that the virus is becoming more infectious.



But studying the properties of these tiny and critically important cellular sacs that travel through organisms in fluids has been difficult, especially when researchers get to the smallest floaters that are 40-100 nanometers in size. To study biological processes at tiny scales, the researchers use atomic force microscopes, which require removing the vesicles from their natural floating homes. The process is expensive, cumbersome and slow. Furthermore, by taking them out of their natural settings, the biological materials also don’t necessarily exhibit their natural behavior, said Dutta.



https://youtu.be/p8-lXc8yRaY



The WSU research team has developed a system that uses a microfluidic-based system and electric fields to better understand vesicles. Similar to a grocery store checker who identifies products as they are passed over a scanner, the researchers apply electrical fields in a liquid as the vesicle passes through a narrow pore. Because of the electric field, the vesicle moves, deforms or reacts differently depending on its chemical make-up. In the case of the HIV vesicles, for instance, the researchers should be able to see the electric field affect the stiffer, more infectious vesicle in a different way than a more flexible, less infectious vesicle. For drug delivery, the system could differentiate a vesicle that contains more or less of a drug — even if the two cells might look identical under a microscope.



“Our system is low-cost and high throughput,” said Dutta. “We can really scan hundreds of samples at a time.”



He added that they can change the speed of the process to allow researchers to more carefully observe property changes.



The researchers developed a model and tested it with synthetic liposomes, tiny sacs that are used for targeted drug delivery. They hope to begin testing the process soon with more realistic biological materials.



See WSU News, https://news.wsu.edu/2018/11/06/new-technique-developed-understand-nanoscale-biology

####

For more information, please click here

Contacts:
Prashanta Dutta, professor, School of Mechanical and Materials Engineering, 509-335-7989,

Tina Hilding, communications director, Voiland College of Engineering and Architecture, 509-335-5095,

Copyright © Washington State Universit

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Videos/Movies

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

The moiré patterns of three layers change the electronic properties of graphene March 8th, 2019

Imaging

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Better microring sensors for optical applications May 10th, 2019

Cancer

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Vaccine design can dramatically improve cancer immunotherapies: Effectiveness depends on molecular architecture and 3D presentation of components May 6th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

Microfluidics/Nanofluidics

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Synthetic Biology

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

Possible Futures

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Nanomedicine

Better microring sensors for optical applications May 10th, 2019

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Nanobiotechnology

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Vaccine design can dramatically improve cancer immunotherapies: Effectiveness depends on molecular architecture and 3D presentation of components May 6th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project